Skibiel et al 2013. Journal of Animal Ecology. The evolution of the nutrient composition of mammalian milks.
# Hom much data?
dim(milk2)
## [1] 130 13
#focal columns
##(use negative indexing to drop some)
summary(milk2[,-c(2,3,8,9)])
## order mass.female gest.month.NUM lacat.mo.NUM
## Artiodactyla :23 Min. : 8 Min. : 0.400 Min. : 0.300
## Carnivora :23 1st Qu.: 857 1st Qu.: 1.405 1st Qu.: 1.625
## Primates :22 Median : 5716 Median : 5.000 Median : 4.500
## Rodentia :17 Mean : 2229475 Mean : 5.624 Mean : 6.092
## Chiroptera :10 3rd Qu.: 107500 3rd Qu.: 8.365 3rd Qu.: 8.225
## Diprotodontia:10 Max. :170000000 Max. :21.460 Max. :42.000
## (Other) :25
## mass.litter diet arid biome
## Min. : 0.3 carnivore:32 no :91 aquatic : 22
## 1st Qu.: 42.0 herbivore:61 yes:39 terrestrial:108
## Median : 423.5 omnivore :37
## Mean : 52563.8
## 3rd Qu.: 7038.2
## Max. :2272500.0
##
## fat.percent
## Min. : 0.200
## 1st Qu.: 4.575
## Median : 8.550
## Mean :14.068
## 3rd Qu.:17.575
## Max. :61.100
## NA's :2
library(ggplot2)
#set font
theme_set(theme_bw(base_size = 18))
qplot(y = fat.percent,
x = mass.female,
data = milk2,
main = "Regression data: continous vs continuous",
xlab = "Continous x: mass of female",
ylab = "Continous y: mass of female")
qplot(y = fat.percent,
x = log(mass.female),
geom = c("point","smooth"),
data = milk2,
main = "Regression data: continous vs log(continuous)",
xlab = "Continous x: log(mass of female)",
ylab = "Continous y: mass of female")
library(ggplot2)
qplot(y = fat.percent,
x = diet,
data = milk2,
facets = ~ biome)
This is a fairly fancy subsetting * Note use of with() * which() * %in%
#Select subset
i.use <- with(milk2, which(order %in% c("Rodentia",
"Primates",
"Lagomorpha")))
#make subset using row indexing
milk3 <- milk2[i.use,]
write.csv(milk3, file = "Skibiel_clean_milk_focal_genera.csv")
Compare original data and our working subset
# Original data
dim(milk2)
## [1] 130 13
#out sowkring subset
dim(milk3)
## [1] 42 13
% Fat generally declines as body mass increases