read in strain gene translation table

#fdata6 is a file that includes ORFs, genes, essential etc
  fdata6 = read.delim("jun10_2016_fdata6.txt",
    stringsAsFactors = F,
    check.names = F)
#select nonessential only for this dataset    
  noness = filter(fdata6, fdata6$essential == 0)
  noness = noness %>% arrange(strain)

input data count matrix

example, SC dropouts hom samples, erica

we also have some new barseq data

#read in count matrix
xbar= as.matrix(read.delim('aug6_2016_hom_barseq.txt',header = T,stringsAsFactors =F,check.names = F,strip.white = T))

#read in annotation for count matrix
p11 = read.delim("oct2_phsbar.txt",header = T,stringsAsFactors = F,check.names = F)

#in this file, controls are SC, experiments are SC in dropout media lacking a single amino acid
# 
w11 = which(p11$type == 'ctrl')
lp11 = p11[-w11,]
#filter out essential strains
wnebar = which(noness$strain %in% rownames(xbar))


hsbar = xbar[noness$strain[wnebar],p11$name]

retrieve normalized counts from edgeR

hsbar = hsbar[,p11$name]
#define conditions as factors using SC as the reference conditions
p11$cond = factor(p11$cond)
p11$cond = relevel(p11$cond,ref='sc')

w11 = which(p11$type == 'ctrl')

#removes low counts that are < 50 for each gene across all samples 
hsbar1 = myall_less50(xbar[noness$strain[wnebar],p11$name])

#removes low counts that are < 50 in any of the ctrls 
hsbar2 = mymin50(hsbar1,w11)

#function that returns normalized counts 
hedge = mynorm_EdgeR(hsbar2,group = p11$cond,ref = 'sc')
## Loading required package: limma
## Disp = 0.04536 , BCV = 0.213

post processing of normalized counts

#sums uptags and downtags into one value
#sums all replicate conditions into on value
#this functions uses all data to define a median value, each experiment is subtract from this value to get a log ratio
hedge2 = myproc_normcounts(hedge,p11$cond)
## [1] 9038   11
## [1] 4718   11

plot results

## R version 3.5.2 (2018-12-20)
## Platform: x86_64-redhat-linux-gnu (64-bit)
## Running under: CentOS release 6.10 (Final)
## 
## Matrix products: default
## BLAS: /usr/lib64/R/lib/libRblas.so
## LAPACK: /usr/lib64/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] edgeR_3.24.3        limma_3.38.3        RColorBrewer_1.1-2 
##  [4] sva_3.30.1          BiocParallel_1.16.6 genefilter_1.64.0  
##  [7] mgcv_1.8-27         nlme_3.1-137        dplyr_0.8.0.1      
## [10] knitr_1.22         
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.1           pillar_1.3.1         compiler_3.5.2      
##  [4] bitops_1.0-6         tools_3.5.2          bit_1.1-14          
##  [7] digest_0.6.18        memoise_1.1.0        RSQLite_2.1.1       
## [10] annotate_1.60.1      evaluate_0.13        tibble_2.1.1        
## [13] lattice_0.20-38      pkgconfig_2.0.2      rlang_0.3.3         
## [16] Matrix_1.2-16        DBI_1.0.0            yaml_2.2.0          
## [19] parallel_3.5.2       xfun_0.6             stringr_1.4.0       
## [22] IRanges_2.16.0       S4Vectors_0.20.1     locfit_1.5-9.1      
## [25] bit64_0.9-7          stats4_3.5.2         grid_3.5.2          
## [28] tidyselect_0.2.5     glue_1.3.1           Biobase_2.42.0      
## [31] R6_2.4.0             AnnotationDbi_1.44.0 survival_2.43-3     
## [34] XML_3.98-1.19        rmarkdown_1.12       blob_1.1.1          
## [37] purrr_0.3.2          magrittr_1.5         matrixStats_0.54.0  
## [40] htmltools_0.3.6      splines_3.5.2        BiocGenerics_0.28.0 
## [43] assertthat_0.2.1     xtable_1.8-3         stringi_1.4.3       
## [46] RCurl_1.95-4.12      crayon_1.3.4