bici<- read.csv("hour.csv",
na.strings = FALSE,
strip.white = TRUE)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
d <- ggplot(bici, aes(hum, atemp))+ geom_point(shape=1)
d + facet_grid(~ season)

c <- bici %>%
dplyr::select(season, atemp, hum, cnt) %>%
ggplot( aes(atemp, hum) ) +
geom_density_2d()+
geom_rug()
c +facet_grid(season ~ .)

bici_d <- bici %>%
dplyr::select(season, atemp, hum, cnt) %>%
filter(season == 1)
bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
bici_density$z <- bici_density$z/sum( bici_density$z)
image(bici_density$z,
col = colorRampPalette(c("black","blue","green","orange","red"))(1000),
zlim=c(min(bici_density$z), max(bici_density$z)))

bici_d <- bici %>%
dplyr::select(season, atemp, hum, cnt) %>%
filter(season == 2)
bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
bici_density$z <- bici_density$z/sum( bici_density$z)
image(bici_density$z,
col = colorRampPalette(c("black","blue","green","orange","red"))(1000),
zlim=c(min(bici_density$z), max(bici_density$z)))

bici_d <- bici %>%
dplyr::select(season, atemp, hum, cnt) %>%
filter(season == 3)
bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
bici_density$z <- bici_density$z/sum( bici_density$z)
image(bici_density$z,
col = colorRampPalette(c("black","blue","green","orange","red"))(1000),
zlim=c(min(bici_density$z), max(bici_density$z)))

bici_d <- bici %>%
dplyr::select(season, atemp, hum, cnt) %>%
filter(season == 4)
bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
bici_density$z <- bici_density$z/sum( bici_density$z)
image(bici_density$z,
col = colorRampPalette(c("black","blue","green","orange","red"))(1000),
zlim=c(min(bici_density$z), max(bici_density$z)))
