bici<- read.csv("hour.csv",
                na.strings = FALSE,
                strip.white = TRUE)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
d <- ggplot(bici, aes(hum, atemp))+ geom_point(shape=1)
d + facet_grid(~ season)

c <- bici %>%  
     dplyr::select(season, atemp, hum, cnt) %>% 
      ggplot( aes(atemp, hum) ) +
      geom_density_2d()+
      geom_rug()
c +facet_grid(season ~ .)

  bici_d <- bici %>%  
               dplyr::select(season, atemp, hum, cnt) %>% 
               filter(season == 1) 
  bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
  bici_density$z <- bici_density$z/sum( bici_density$z) 

image(bici_density$z,  
      col = colorRampPalette(c("black","blue","green","orange","red"))(1000), 
      zlim=c(min(bici_density$z), max(bici_density$z)))

  bici_d <- bici %>%  
               dplyr::select(season, atemp, hum, cnt) %>% 
               filter(season == 2) 
  bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
  bici_density$z <- bici_density$z/sum( bici_density$z) 

image(bici_density$z,  
      col = colorRampPalette(c("black","blue","green","orange","red"))(1000), 
      zlim=c(min(bici_density$z), max(bici_density$z)))

  bici_d <- bici %>%  
               dplyr::select(season, atemp, hum, cnt) %>% 
               filter(season == 3) 
  bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
  bici_density$z <- bici_density$z/sum( bici_density$z) 

image(bici_density$z,  
      col = colorRampPalette(c("black","blue","green","orange","red"))(1000), 
      zlim=c(min(bici_density$z), max(bici_density$z)))

  bici_d <- bici %>%  
               dplyr::select(season, atemp, hum, cnt) %>% 
               filter(season == 4) 
  bici_density <- kde2d(bici_d$hum,bici_d$atemp, n=100)
  bici_density$z <- bici_density$z/sum( bici_density$z) 

image(bici_density$z,  
      col = colorRampPalette(c("black","blue","green","orange","red"))(1000), 
      zlim=c(min(bici_density$z), max(bici_density$z)))