Analysis for a Field Test of Laundry Soaps

Loading required packages and data:

Examine data frame

'data.frame':   1008 obs. of  4 variables:
 $ choice: Factor w/ 2 levels "M","X": 2 2 2 2 2 2 2 2 2 2 ...
 $ muser : Factor w/ 2 levels "NO","YES": 1 1 1 1 1 1 1 1 1 1 ...
 $ wtemp : Factor w/ 2 levels "HIGH","LOW": 2 2 2 2 2 2 2 2 2 2 ...
 $ wtype : Factor w/ 3 levels "HARD","MEDIUM",..: 1 1 1 1 1 1 1 1 1 1 ...
NULL

Output of first few observations:

Peek at last few observations:

, , muser = NO, choice = M

      wtype
wtemp  HARD MEDIUM SOFT
  HIGH   30     23   27
  LOW    42     50   53

, , muser = YES, choice = M

      wtype
wtemp  HARD MEDIUM SOFT
  HIGH   43     47   29
  LOW    52     55   49

, , muser = NO, choice = X

      wtype
wtemp  HARD MEDIUM SOFT
  HIGH   42     33   29
  LOW    68     66   63

, , muser = YES, choice = X

      wtype
wtemp  HARD MEDIUM SOFT
  HIGH   24     23   19
  LOW    37     47   57

Summary of fit model of experimental design with interactions:


Call:  glm(formula = soaps_model, family = binomial, data = soaps)

Coefficients:
                  (Intercept)                       muserYES                       wtempLOW  
                      0.33647                       -0.91962                        0.14537  
                  wtypeMEDIUM                      wtypeSOFT              muserYES:wtempLOW  
                      0.02454                       -0.26501                        0.09745  
         muserYES:wtypeMEDIUM             muserYES:wtypeSOFT           wtempLOW:wtypeMEDIUM  
                     -0.15605                        0.42530                       -0.22875  
           wtempLOW:wtypeSOFT  muserYES:wtempLOW:wtypeMEDIUM    muserYES:wtempLOW:wtypeSOFT  
                     -0.04398                        0.54339                        0.37525  

Degrees of Freedom: 1007 Total (i.e. Null);  996 Residual
Null Deviance:      1397 
Residual Deviance: 1364     AIC: 1388

Analysis of deviance (ANOVA) for experimental factors

Analysis of Deviance Table

Model: binomial, link: logit

Response: choice

Terms added sequentially (first to last)

                  Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                               1007     1397.3              
muser              1  20.5815      1006     1376.7 5.715e-06 ***
wtemp              1   3.8002      1005     1372.9   0.05125 .  
wtype              2   0.2160      1003     1372.7   0.89763    
muser:wtemp        1   2.7328      1002     1370.0   0.09831 .  
muser:wtype        2   4.5961      1000     1365.4   0.10045    
wtemp:wtype        2   0.1618       998     1365.2   0.92228    
muser:wtemp:wtype  2   0.7373       996     1364.5   0.69166    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Generating an interaction plot for brand X choice as a percentage

LS0tDQp0aXRsZTogIkRldmVsb3BpbmcgTmV3IFByb2R1Y3RzIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyBBbmFseXNpcyBmb3IgYSBGaWVsZCBUZXN0IG9mIExhdW5kcnkgU29hcHMNCg0KTG9hZGluZyByZXF1aXJlZCBwYWNrYWdlcyBhbmQgZGF0YToNCg0KYGBge3IgZXZhbD1UUlVFLCBlY2hvPUZBTFNFfQ0KbGlicmFyeShnZ3Bsb3QyKSAgIyBncmFwaGljcyBmb3IgaW50ZXJhY3Rpb24gcGxvdHRpbmcNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHNldCBjb250cmFzdCBmb3IgdGVzdHMgb2Ygc2lnbmlmaWNhbmNlIHdpdGggZmFjdG9ycw0Kb3B0aW9ucyhjb250cmFzdHM9YyhmYWN0b3IgPSAiY29udHIudHJlYXRtZW50Iiwgb3JkZXJlZD0iY29udHIucG9seSIpKQ0KYGBgDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgZmlyc3QgaW1wb3J0IGRhdGEgZnJvbSB0aGUgY29tbWEtZGVsaW1pdGVkIGZpbGUgZ3NvYXBzLmNzdg0KIyB0aGUgcmVzcG9uc2UgdmFyaWFibGUgcmVsYXRlcyB0byBicmFuZCBjaG9pY2UNCiMgY2hvaWNlIGlzIGZhY3Rvci9iaW5hcnkgcmVzcG9uc2UgdmFyaWFibGUgKE0gb3IgWCkNCiMgdGhlIGV4cGxhbmF0b3J5IHZhcmlhYmxlcyBhcmUgZmFjdG9ycyAoY2F0ZWdvcmljYWwgdmFyaWFibGVzKToNCiMgICB3dGVtcCA9IHdhdGVyIHRlbXBlcmF0dXJlIHdpdGggbGV2ZWxzIExPVyBPUiBISUdIDQojICAgd3R5cGUgPSB3YXRlciB0eXBlIHdpdGggbGV2ZWxzIFNPRlQsIE1FRElVTSwgT1IgSEFSRA0KIyAgIG11c2VyID0gaXMgdXNlciBvZiBicmFuZCBNIHdpdGggbGFiZWxzIE5PIE9SIFlFUw0KDQojIHJlYWQgZ3JvdXBlZCBmcmVxdWVjeSBkYXRhIGZpbGUNCmdzb2FwcyA8LSByZWFkLmNzdigiZ3NvYXBzLmNzdiIpDQoNCmBgYA0KDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgY29udmVydCB0byBpbmRpdmlkdWFsIG9ic2VydmF0aW9ucyBhcyByZXF1aXJlZCBmb3IgbG9naXN0aWMgcmVncmVzc2lvbg0KaW5kaWNlcyA8LSByZXAoMTpucm93KGdzb2FwcyksZ3NvYXBzJGZyZXEpDQpzb2FwcyA8LSBnc29hcHNbaW5kaWNlcywtMV0NCnNvYXBzIDwtIGRhdGEuZnJhbWUoc29hcHMsIHJvdy5uYW1lcz1OVUxMKQ0KDQpgYGANCg0KRXhhbWluZSBkYXRhIGZyYW1lDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgY2hlY2sgdGhlIGRhdGEgZnJhbWUNCnByaW50KHN0cihzb2FwcykpDQpgYGANCg0KT3V0cHV0IG9mIGZpcnN0IGZldyBvYnNlcnZhdGlvbnM6DQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCnByaW50KGhlYWQoc29hcHMpKQ0KYGBgDQoNClBlZWsgYXQgbGFzdCBmZXcgb2JzZXJ2YXRpb25zOg0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQpwcmludCh0YWlsKHNvYXBzKSkNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQp3aXRoKHNvYXBzLCBwcmludCh0YWJsZSh3dGVtcCwgd3R5cGUsIG11c2VyLCBjaG9pY2UpKSkNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHNwZWNpZnkgY29tcGxldGUgZXhwZXJpbWVudGFsIGRlc2lnbiB3aXRoIGludGVyYWN0aW9ucw0Kc29hcHNfbW9kZWwgPC0gY2hvaWNlIH4gbXVzZXIgKiB3dGVtcCAqIHd0eXBlIA0KYGBgDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgZml0IHRoZSBjb21wbGV0ZSBtb2RlbCAgICAgDQpzb2Fwc19maXQgPC0gZ2xtKHNvYXBzX21vZGVsLCBmYW1pbHkgPSBiaW5vbWlhbCwgZGF0YT1zb2FwcykNCmBgYA0KDQpTdW1tYXJ5IG9mIGZpdCBtb2RlbCBvZiBleHBlcmltZW50YWwgZGVzaWduIHdpdGggaW50ZXJhY3Rpb25zOg0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHN1bW1hcnkgb2YgZml0DQpwcmludChzb2Fwc19maXQpDQoNCmBgYA0KDQpBbmFseXNpcyBvZiBkZXZpYW5jZSAoQU5PVkEpIGZvciBleHBlcmltZW50YWwgZmFjdG9ycw0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIGFuYWx5c2lzIG9mIGRldmlhbmNlIGZvciBleHBlcmltZW50YWwgZmFjdG9ycw0KIyBwcm92aWRpbmcgbGlrZWxpaG9vZCByYXRpbyBjaGktc3F1YXJlIHRlc3RzIG9mIGVhY2ggZWZmZWN0DQpwcmludChhbm92YShzb2Fwc19maXQsIHRlc3Q9IkNoaXNxIikpICANCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQojIEludGVyYWN0aW9uIFBsb3R0aW5nDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQojIGNvZGUgdGhlIGNob2ljZSBhcyBhIDAvMSBiaW5hcnkgdmFyaWFibGUgMSA9IEJyYW5kIFggIA0Kc29hcHMkcmVzcG9uc2UgPC0gaWZlbHNlKChzb2FwcyRjaG9pY2UgPT0gIlgiKSwgMSwgMCkNCg0KIyBjb21wdXRlIGNob2ljZSBzaGFyZSBjZWxsIG1lYW5zIGZvciB1c2UgaW4gaW50ZXJhY3Rpb24gcGxvdA0KcmVzcG9uc2VfbWVhbiA8LSBhZ2dyZWdhdGUocmVzcG9uc2UgfiBtdXNlciAqIHd0ZW1wLA0KICBkYXRhID0gc29hcHMsIG1lYW4pDQoNCmBgYA0KDQpHZW5lcmF0aW5nIGFuIGludGVyYWN0aW9uIHBsb3QgZm9yIGJyYW5kIFggY2hvaWNlIGFzIGEgcGVyY2VudGFnZQ0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIGdlbmVyYXRlIGFuIGludGVyYWN0aW9uIHBsb3QgZm9yIGJyYW5kIFggY2hvaWNlIGFzIGEgcGVyY2VudGFnZQ0KcGRmKGZpbGUgPSAiZmlnX2RldmVsb3BpbmdfbmV3X3Byb2R1Y3RzX3NvYXBzX2ludGVyYWN0aW9uX3Bsb3QucGRmIiwgDQogICAgd2lkdGggPSA3LCBoZWlnaHQgPSA1KQ0KDQppbnRlcmFjdGlvbl9wbG90IDwtIGdncGxvdChyZXNwb25zZV9tZWFuLCANCiAgYWVzKHggPSBtdXNlciwgeSA9IDEwMCpyZXNwb25zZSwgDQogIGdyb3VwID0gd3RlbXAsIGZpbGwgPSB3dGVtcCkpICsgIA0KICBnZW9tX2xpbmUobGluZXR5cGUgPSAic29saWQiLCBzaXplID0gMSwgY29sb3VyID0gImJsYWNrIikgKw0KICBnZW9tX3BvaW50KHNpemUgPSA0LCBzaGFwZSA9IDIxKSArDQogIHlsYWIoIlByZWZlcmVuY2UgZm9yIFNvYXAgWCAocGVyY2VudGFnZSkiKSArDQogIHhsYWIoIkN1cnJlbnRseSBVc2VzIFNvYXAgTSIpICsNCiAgbGFicyhmaWxsID0gIldhdGVyIFRlbXBlcmF0dXJlIikgKw0KICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGxpbmVoZWlnaHQ9LjgsIGZhY2U9ImJvbGQiKSkNCg0KcHJpbnQoaW50ZXJhY3Rpb25fcGxvdCkNCg0KZGV2Lm9mZigpDQoNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHdyaXRlIGluZGl2aWR1YWwgZmllbGQgdGVzdCBkYXRhIHRvIGNvbW1hLWRlbGltaXRlZCBmaWxlDQp3cml0ZS5jc3Yoc29hcHMsIGZpbGUgPSAic29hcHMuY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpDQpgYGANCg==