Analysis for a Field Test of Laundry Soaps
Loading required packages and data:
Examine data frame
'data.frame': 1008 obs. of 4 variables:
$ choice: Factor w/ 2 levels "M","X": 2 2 2 2 2 2 2 2 2 2 ...
$ muser : Factor w/ 2 levels "NO","YES": 1 1 1 1 1 1 1 1 1 1 ...
$ wtemp : Factor w/ 2 levels "HIGH","LOW": 2 2 2 2 2 2 2 2 2 2 ...
$ wtype : Factor w/ 3 levels "HARD","MEDIUM",..: 1 1 1 1 1 1 1 1 1 1 ...
NULL
Output of first few observations:
Peek at last few observations:
, , muser = NO, choice = M
wtype
wtemp HARD MEDIUM SOFT
HIGH 30 23 27
LOW 42 50 53
, , muser = YES, choice = M
wtype
wtemp HARD MEDIUM SOFT
HIGH 43 47 29
LOW 52 55 49
, , muser = NO, choice = X
wtype
wtemp HARD MEDIUM SOFT
HIGH 42 33 29
LOW 68 66 63
, , muser = YES, choice = X
wtype
wtemp HARD MEDIUM SOFT
HIGH 24 23 19
LOW 37 47 57
Summary of fit model of experimental design with interactions:
Call: glm(formula = soaps_model, family = binomial, data = soaps)
Coefficients:
(Intercept) muserYES wtempLOW
0.33647 -0.91962 0.14537
wtypeMEDIUM wtypeSOFT muserYES:wtempLOW
0.02454 -0.26501 0.09745
muserYES:wtypeMEDIUM muserYES:wtypeSOFT wtempLOW:wtypeMEDIUM
-0.15605 0.42530 -0.22875
wtempLOW:wtypeSOFT muserYES:wtempLOW:wtypeMEDIUM muserYES:wtempLOW:wtypeSOFT
-0.04398 0.54339 0.37525
Degrees of Freedom: 1007 Total (i.e. Null); 996 Residual
Null Deviance: 1397
Residual Deviance: 1364 AIC: 1388
Analysis of deviance (ANOVA) for experimental factors
Analysis of Deviance Table
Model: binomial, link: logit
Response: choice
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1007 1397.3
muser 1 20.5815 1006 1376.7 5.715e-06 ***
wtemp 1 3.8002 1005 1372.9 0.05125 .
wtype 2 0.2160 1003 1372.7 0.89763
muser:wtemp 1 2.7328 1002 1370.0 0.09831 .
muser:wtype 2 4.5961 1000 1365.4 0.10045
wtemp:wtype 2 0.1618 998 1365.2 0.92228
muser:wtemp:wtype 2 0.7373 996 1364.5 0.69166
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Generating an interaction plot for brand X choice as a percentage

LS0tDQp0aXRsZTogIkRldmVsb3BpbmcgTmV3IFByb2R1Y3RzIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyBBbmFseXNpcyBmb3IgYSBGaWVsZCBUZXN0IG9mIExhdW5kcnkgU29hcHMNCg0KTG9hZGluZyByZXF1aXJlZCBwYWNrYWdlcyBhbmQgZGF0YToNCg0KYGBge3IgZXZhbD1UUlVFLCBlY2hvPUZBTFNFfQ0KbGlicmFyeShnZ3Bsb3QyKSAgIyBncmFwaGljcyBmb3IgaW50ZXJhY3Rpb24gcGxvdHRpbmcNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHNldCBjb250cmFzdCBmb3IgdGVzdHMgb2Ygc2lnbmlmaWNhbmNlIHdpdGggZmFjdG9ycw0Kb3B0aW9ucyhjb250cmFzdHM9YyhmYWN0b3IgPSAiY29udHIudHJlYXRtZW50Iiwgb3JkZXJlZD0iY29udHIucG9seSIpKQ0KYGBgDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgZmlyc3QgaW1wb3J0IGRhdGEgZnJvbSB0aGUgY29tbWEtZGVsaW1pdGVkIGZpbGUgZ3NvYXBzLmNzdg0KIyB0aGUgcmVzcG9uc2UgdmFyaWFibGUgcmVsYXRlcyB0byBicmFuZCBjaG9pY2UNCiMgY2hvaWNlIGlzIGZhY3Rvci9iaW5hcnkgcmVzcG9uc2UgdmFyaWFibGUgKE0gb3IgWCkNCiMgdGhlIGV4cGxhbmF0b3J5IHZhcmlhYmxlcyBhcmUgZmFjdG9ycyAoY2F0ZWdvcmljYWwgdmFyaWFibGVzKToNCiMgICB3dGVtcCA9IHdhdGVyIHRlbXBlcmF0dXJlIHdpdGggbGV2ZWxzIExPVyBPUiBISUdIDQojICAgd3R5cGUgPSB3YXRlciB0eXBlIHdpdGggbGV2ZWxzIFNPRlQsIE1FRElVTSwgT1IgSEFSRA0KIyAgIG11c2VyID0gaXMgdXNlciBvZiBicmFuZCBNIHdpdGggbGFiZWxzIE5PIE9SIFlFUw0KDQojIHJlYWQgZ3JvdXBlZCBmcmVxdWVjeSBkYXRhIGZpbGUNCmdzb2FwcyA8LSByZWFkLmNzdigiZ3NvYXBzLmNzdiIpDQoNCmBgYA0KDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgY29udmVydCB0byBpbmRpdmlkdWFsIG9ic2VydmF0aW9ucyBhcyByZXF1aXJlZCBmb3IgbG9naXN0aWMgcmVncmVzc2lvbg0KaW5kaWNlcyA8LSByZXAoMTpucm93KGdzb2FwcyksZ3NvYXBzJGZyZXEpDQpzb2FwcyA8LSBnc29hcHNbaW5kaWNlcywtMV0NCnNvYXBzIDwtIGRhdGEuZnJhbWUoc29hcHMsIHJvdy5uYW1lcz1OVUxMKQ0KDQpgYGANCg0KRXhhbWluZSBkYXRhIGZyYW1lDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgY2hlY2sgdGhlIGRhdGEgZnJhbWUNCnByaW50KHN0cihzb2FwcykpDQpgYGANCg0KT3V0cHV0IG9mIGZpcnN0IGZldyBvYnNlcnZhdGlvbnM6DQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCnByaW50KGhlYWQoc29hcHMpKQ0KYGBgDQoNClBlZWsgYXQgbGFzdCBmZXcgb2JzZXJ2YXRpb25zOg0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQpwcmludCh0YWlsKHNvYXBzKSkNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQp3aXRoKHNvYXBzLCBwcmludCh0YWJsZSh3dGVtcCwgd3R5cGUsIG11c2VyLCBjaG9pY2UpKSkNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHNwZWNpZnkgY29tcGxldGUgZXhwZXJpbWVudGFsIGRlc2lnbiB3aXRoIGludGVyYWN0aW9ucw0Kc29hcHNfbW9kZWwgPC0gY2hvaWNlIH4gbXVzZXIgKiB3dGVtcCAqIHd0eXBlIA0KYGBgDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1GQUxTRX0NCiMgZml0IHRoZSBjb21wbGV0ZSBtb2RlbCAgICAgDQpzb2Fwc19maXQgPC0gZ2xtKHNvYXBzX21vZGVsLCBmYW1pbHkgPSBiaW5vbWlhbCwgZGF0YT1zb2FwcykNCmBgYA0KDQpTdW1tYXJ5IG9mIGZpdCBtb2RlbCBvZiBleHBlcmltZW50YWwgZGVzaWduIHdpdGggaW50ZXJhY3Rpb25zOg0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHN1bW1hcnkgb2YgZml0DQpwcmludChzb2Fwc19maXQpDQoNCmBgYA0KDQpBbmFseXNpcyBvZiBkZXZpYW5jZSAoQU5PVkEpIGZvciBleHBlcmltZW50YWwgZmFjdG9ycw0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIGFuYWx5c2lzIG9mIGRldmlhbmNlIGZvciBleHBlcmltZW50YWwgZmFjdG9ycw0KIyBwcm92aWRpbmcgbGlrZWxpaG9vZCByYXRpbyBjaGktc3F1YXJlIHRlc3RzIG9mIGVhY2ggZWZmZWN0DQpwcmludChhbm92YShzb2Fwc19maXQsIHRlc3Q9IkNoaXNxIikpICANCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQojIEludGVyYWN0aW9uIFBsb3R0aW5nDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQojIGNvZGUgdGhlIGNob2ljZSBhcyBhIDAvMSBiaW5hcnkgdmFyaWFibGUgMSA9IEJyYW5kIFggIA0Kc29hcHMkcmVzcG9uc2UgPC0gaWZlbHNlKChzb2FwcyRjaG9pY2UgPT0gIlgiKSwgMSwgMCkNCg0KIyBjb21wdXRlIGNob2ljZSBzaGFyZSBjZWxsIG1lYW5zIGZvciB1c2UgaW4gaW50ZXJhY3Rpb24gcGxvdA0KcmVzcG9uc2VfbWVhbiA8LSBhZ2dyZWdhdGUocmVzcG9uc2UgfiBtdXNlciAqIHd0ZW1wLA0KICBkYXRhID0gc29hcHMsIG1lYW4pDQoNCmBgYA0KDQpHZW5lcmF0aW5nIGFuIGludGVyYWN0aW9uIHBsb3QgZm9yIGJyYW5kIFggY2hvaWNlIGFzIGEgcGVyY2VudGFnZQ0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIGdlbmVyYXRlIGFuIGludGVyYWN0aW9uIHBsb3QgZm9yIGJyYW5kIFggY2hvaWNlIGFzIGEgcGVyY2VudGFnZQ0KcGRmKGZpbGUgPSAiZmlnX2RldmVsb3BpbmdfbmV3X3Byb2R1Y3RzX3NvYXBzX2ludGVyYWN0aW9uX3Bsb3QucGRmIiwgDQogICAgd2lkdGggPSA3LCBoZWlnaHQgPSA1KQ0KDQppbnRlcmFjdGlvbl9wbG90IDwtIGdncGxvdChyZXNwb25zZV9tZWFuLCANCiAgYWVzKHggPSBtdXNlciwgeSA9IDEwMCpyZXNwb25zZSwgDQogIGdyb3VwID0gd3RlbXAsIGZpbGwgPSB3dGVtcCkpICsgIA0KICBnZW9tX2xpbmUobGluZXR5cGUgPSAic29saWQiLCBzaXplID0gMSwgY29sb3VyID0gImJsYWNrIikgKw0KICBnZW9tX3BvaW50KHNpemUgPSA0LCBzaGFwZSA9IDIxKSArDQogIHlsYWIoIlByZWZlcmVuY2UgZm9yIFNvYXAgWCAocGVyY2VudGFnZSkiKSArDQogIHhsYWIoIkN1cnJlbnRseSBVc2VzIFNvYXAgTSIpICsNCiAgbGFicyhmaWxsID0gIldhdGVyIFRlbXBlcmF0dXJlIikgKw0KICB0aGVtZShwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGxpbmVoZWlnaHQ9LjgsIGZhY2U9ImJvbGQiKSkNCg0KcHJpbnQoaW50ZXJhY3Rpb25fcGxvdCkNCg0KZGV2Lm9mZigpDQoNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89RkFMU0V9DQojIHdyaXRlIGluZGl2aWR1YWwgZmllbGQgdGVzdCBkYXRhIHRvIGNvbW1hLWRlbGltaXRlZCBmaWxlDQp3cml0ZS5jc3Yoc29hcHMsIGZpbGUgPSAic29hcHMuY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpDQpgYGANCg==