# Data Preprocessing template
# Importing the dataset
dataset = read.csv('Position_Salaries.csv')
dataset = dataset[2:3]
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
# library(caTools)
# set.seed(123)
# split = sample.split(dataset$Profit, SplitRatio = 0.8)
# training_set = subset(dataset, split == TRUE)
# test_set = subset(dataset, split == FALSE)
# getwd()
# Feature Scaling
# training_set[, 2:3] = scale(training_set[, 2:3])
# test_set[, 2:3] = scale(test_set[, 2:3])
Linear vs Polynomial model comparision
# Linear Regression model
linReg = lm(formula = Salary ~ . ,
data = dataset )
summary(linReg)
##
## Call:
## lm(formula = Salary ~ ., data = dataset)
##
## Residuals:
## Min 1Q Median 3Q Max
## -170818 -129720 -40379 65856 386545
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -195333 124790 -1.565 0.15615
## Level 80879 20112 4.021 0.00383 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 182700 on 8 degrees of freedom
## Multiple R-squared: 0.669, Adjusted R-squared: 0.6277
## F-statistic: 16.17 on 1 and 8 DF, p-value: 0.003833
# Polynomial Regression model
dataset$level2 = dataset$Level^2
dataset$level3 = dataset$Level^3
dataset$level4 = dataset$Level^4
polyReg = lm(formula = Salary ~ . ,
data = dataset )
summary(polyReg)
##
## Call:
## lm(formula = Salary ~ ., data = dataset)
##
## Residuals:
## 1 2 3 4 5 6 7 8 9 10
## -8357 18240 1358 -14633 -11725 6725 15997 10006 -28695 11084
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 184166.7 67768.0 2.718 0.04189 *
## Level -211002.3 76382.2 -2.762 0.03972 *
## level2 94765.4 26454.2 3.582 0.01584 *
## level3 -15463.3 3535.0 -4.374 0.00719 **
## level4 890.2 159.8 5.570 0.00257 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20510 on 5 degrees of freedom
## Multiple R-squared: 0.9974, Adjusted R-squared: 0.9953
## F-statistic: 478.1 on 4 and 5 DF, p-value: 1.213e-06
######## Visualizing Linear model
#install.packages('ggplot2')
library(ggplot2)
ggplot() +
geom_point(aes( x= dataset$Level , y= dataset$Salary),
color = 'Red') +
geom_line(aes( x= dataset$Level , y= predict(linReg, newdata = dataset) ),
color = 'Blue')+
ggtitle("Linear Regression Model") +
xlab("Level") +
ylab("Salary")
######### Visualizaing Polynimal Reg model
ggplot() +
geom_point(aes( x= dataset$Level , y= dataset$Salary),
color = 'Red') +
geom_line(aes( x= dataset$Level , y= predict(polyReg, newdata = dataset) ),
color = 'Blue')+
ggtitle("Polynomial Regression Model") +
xlab("Level") +
ylab("Salary")
Predicting Salary for a random level of 6.5
### Predicting Salary using linear Reg
y_pred = predict(linReg, newdata = data.frame(Level = 6.5))
### Predicting Salary using Poly Reg
y_pred_poly = predict(polyReg, newdata = data.frame(Level = 6.5,
level2 = 6.5^2,
level3 = 6.5^3,
level4 = 6.5^4))