The data:
## Customer TransDate Quantity PurchAmount Cost TransID TransKey
## 1: 149332 2005-11-15 1 199.95 107.00 127998739 100000
## 2: 172951 2008-08-29 1 199.95 108.00 128888288 100001
## 3: 120621 2007-10-19 1 99.95 49.00 125375247 100002
## 4: 149236 2005-11-14 1 39.95 18.95 127996226 100003
## 5: 149236 2007-06-12 1 79.95 35.00 128670302 100004
## 6: 140729 2009-11-19 1 129.95 59.00 127637750 100005
All RFM measures have to be measured on the individual customer level:
Customer | recency | frequency | monetary |
---|---|---|---|
149332 | 2257 | 3 | 92 |
172951 | 1411 | 4 | 222 |
120621 | 1878 | 1 | 100 |
149236 | 2007 | 2 | 60 |
140729 | 225 | 6 | 67 |
180970 | 1269 | 2 | 74 |
Recency: The higher the recency measure, the lower the score.
Frequency: The higher the frequency measure, the higher the score.
Monetary Value: The higher the monetary value measure, the higher the score.
Customer | recency | frequency | monetary |
---|---|---|---|
149332 | 1 | 3 | 3 |
172951 | 2 | 3 | 3 |
120621 | 1 | 1 | 3 |
149236 | 1 | 2 | 2 |
140729 | 3 | 3 | 2 |
180970 | 2 | 2 | 2 |
RFM scores can be either unweighted or weighted:
\(RFM.Score(unweigthed) = 1/3*recency + 1/3*frequency + 1/3*monetary\)
## Customer recency frequency monetary overall
## 1: 149332 1 3 3 2.333333
## 2: 172951 2 3 3 2.666667
## 3: 120621 1 1 3 1.666667
## 4: 149236 1 2 2 1.666667
## 5: 140729 3 3 2 2.666667
## 6: 180970 2 2 2 2.000000
\(RFM.Score(weigthed) = 0.2*recency + 0.6frequency + 0.2*monetary\)
## Customer recency frequency monetary overall weighted1
## 1: 149332 1 3 3 2.333333 2.6
## 2: 172951 2 3 3 2.666667 2.8
## 3: 120621 1 1 3 1.666667 1.4
## 4: 149236 1 2 2 1.666667 1.8
## 5: 140729 3 3 2 2.666667 2.8
## 6: 180970 2 2 2 2.000000 2.0
Based on their RFM scores, customers can be divided into target groups.
Customers with the maximal score:
## Customer recency frequency monetary overall weighted1
## 1: 187038 3 3 3 3 3
## 2: 126172 3 3 3 3 3
## 3: 198566 3 3 3 3 3
## 4: 187768 3 3 3 3 3
## 5: 155576 3 3 3 3 3
## 6: 166946 3 3 3 3 3