u <- matrix(c(0.5, 0.5), nrow = 2)
v <- matrix(c(3, -4), nrow = 2)
crossprod(u,v)
## [,1]
## [1,] -0.5
\(\left \| \vec{u} \right \| = \sqrt{0.5^2 + 0.5^2} = 0.7071068\)
\(\left \| \vec{v} \right \| = \sqrt{3^2 + (-4)^2} = 5\)
3*u - 2*v
## [,1]
## [1,] -4.5
## [2,] 9.5
\(cos\theta = \frac{\vec{u} \cdot \vec{v}}{\left \| \vec{u} \right \| \cdot \left \| \vec{v} \right \|} = \frac{-0.5}{3.5355339} = -0.1414214\)
\(\theta = acos(-0.1414214) = 1.7126934\) radians \(= 98.1301165\) degrees.
A <- matrix(c(
1, 1, 3,
2, -1, 5,
-1, -2, 4),
byrow = TRUE, nrow = 3)
b <- matrix(c(
1,
2,
6),
byrow = TRUE, nrow = 3)
i_dim = nrow(A)
j_dim = ncol(A)
# via Gauss Jordan Elimination -
# The following loop produces the unfactored
# identity matrix
for (i in 1:i_dim) {
for (j in 1:j_dim) {
if (i == j) {
for (k in 1:i_dim){
if (k != i & A[k,j] != 0) {
multi <- A[i,j] / A[k,j]
A[k,] <- A[k,] * multi - A[i,]
b[k] <- b[k] * multi - b[i]
}
}
}
}
}
# Loop will create factored identity matrix
for (l in 1:i_dim) {
b[l] <- b[l]/A[l,l]
A[l,l] <- A[l,l]/A[l,l]
}
(A)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
(b)
## [,1]
## [1,] -1.5454545
## [2,] -0.3181818
## [3,] 0.9545455