Potrebné R libraries

library(lavaan, quietly = TRUE, warn.conflicts = FALSE)
## This is lavaan 0.5-22
## lavaan is BETA software! Please report any bugs.
library(semPlot, quietly = TRUE, warn.conflicts = FALSE)
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)
library(psych, quietly = TRUE, warn.conflicts = FALSE)
library(ICC, quietly = TRUE, warn.conflicts = FALSE)
library(Amelia, quietly = TRUE, warn.conflicts = FALSE)
## ## 
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.4, built: 2015-12-05)
## ## Copyright (C) 2005-2017 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(BaylorEdPsych, quietly = TRUE, warn.conflicts = FALSE)

Príprava dát

Načítanie dátového súboru

#rm(list = ls())
setwd(dir = "/Users/ivanropovik/OneDrive/MANUSCRIPTS/2017 HQL Validizacna studia")
full.data <- read.csv(file = "data_4countries_raw.csv", header = TRUE, sep = ";")
#View(full.data)

Selekcia premenných pre CFA nástroja

HLQ.collumns <- full.data %>% filter(cntr == 4) %>% select(HL1:HL24)
delete.na <- function(HLQ.collumns, n=NULL) {
  HLQ.collumns[rowSums(is.na(HLQ.collumns)) <= n,]
}

Vizualizácia chýbajucich dát po odstránení prázdnych riadkov

data.na.rm <- delete.na(HLQ.collumns, n = 10)
missmap(data.na.rm, rank.order = TRUE)

Percento chýbajúcich dát

paste(round(sum(is.na(data.na.rm))/prod(dim(data.na.rm))*100, 3), "%", sep = "")
## [1] "1.975%"

Imputácia chýbajúcich dát - bootstraped expected maximization

set.seed(123)
data_imput <- amelia(data.na.rm, ords = c("HL1", "HL2", "HL3", "HL4", "HL5",
                                          "HL6", "HL7", "HL8", "HL9", "HL10",
                                          "HL11", "HL12", "HL13", "HL14", "HL15",
                                          "HL16", "HL17", "HL18", "HL19", "HL20",
                                          "HL21", "HL22", "HL23", "HL24"), m = 1)
## -- Imputation 1 --
## 
##   1  2  3  4  5  6  7  8  9 10 11 12 13
data <- as.data.frame(data_imput$imputations)
names(data) <- c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9",
                 "HL10", "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17",
                 "HL18", "HL19", "HL20", "HL21", "HL22", "HL23", "HL24")

Frekvenčné tabuľky

lapply(data[,c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9",
               "HL10", "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17",
               "HL18", "HL19", "HL20", "HL21", "HL22", "HL23", "HL24")],
       function(x){table(x, useNA = "ifany")})
## $HL1
## x
##   1   2   3   4 
##   2  21 127  42 
## 
## $HL2
## x
##   1   2   3   4 
##   4  22 114  52 
## 
## $HL3
## x
##   1   2   3   4 
##   9  34 113  36 
## 
## $HL4
## x
##   1   2   3   4 
##   8  30 102  52 
## 
## $HL5
## x
##   1   2   3   4 
##   2  18 116  56 
## 
## $HL6
## x
##  1  2  3  4 
##  3 24 89 76 
## 
## $HL7
## x
##   1   2   3   4 
##  13  41 106  32 
## 
## $HL8
## x
##   1   2   3   4 
##  12  44 106  30 
## 
## $HL9
## x
##   1   2   3   4 
##   6  39 104  43 
## 
## $HL10
## x
##   1   2   3   4 
##   4  36 122  30 
## 
## $HL11
## x
##   1   2   3   4 
##   5  29 110  48 
## 
## $HL12
## x
##   1   2   3   4 
##   5  48 110  29 
## 
## $HL13
## x
##   1   2   3   4 
##   7  34 116  35 
## 
## $HL14
## x
##  1  2  3  4 
##  8 57 85 42 
## 
## $HL15
## x
##   1   2   3   4 
##   5  19 116  52 
## 
## $HL16
## x
##   1   2   3   4 
##   4  50 115  23 
## 
## $HL17
## x
##  2  3  4 
## 16 87 89 
## 
## $HL18
## x
##  2  3  4 
## 17 85 90 
## 
## $HL19
## x
##   1   2   3   4 
##   8  42 108  34 
## 
## $HL20
## x
##   1   2   3   4 
##   8  38 115  31 
## 
## $HL21
## x
##   1   2   3   4 
##   4  34 113  41 
## 
## $HL22
## x
##   1   2   3   4 
##   7  28 105  52 
## 
## $HL23
## x
##   2   3   4 
##  39 114  39 
## 
## $HL24
## x
##   1   2   3   4 
##   6  29 124  33

Finálne dáta

#View(data)

Deskriptívna analýza

Deskriptívne štatistiky

describe(data, na.rm = TRUE, skew = TRUE, ranges = FALSE)
##      vars   n mean   sd  skew kurtosis   se
## HL1     1 192 3.09 0.60 -0.32     0.80 0.04
## HL2     2 192 3.11 0.68 -0.54     0.62 0.05
## HL3     3 192 2.92 0.74 -0.56     0.38 0.05
## HL4     4 192 3.03 0.77 -0.60     0.17 0.06
## HL5     5 192 3.18 0.63 -0.40     0.47 0.05
## HL6     6 192 3.24 0.73 -0.64    -0.06 0.05
## HL7     7 192 2.82 0.79 -0.50     0.01 0.06
## HL8     8 192 2.80 0.77 -0.46     0.00 0.06
## HL9     9 192 2.96 0.74 -0.39    -0.08 0.05
## HL10   10 192 2.93 0.65 -0.38     0.52 0.05
## HL11   11 192 3.05 0.71 -0.50     0.30 0.05
## HL12   12 192 2.85 0.70 -0.25    -0.02 0.05
## HL13   13 192 2.93 0.71 -0.52     0.47 0.05
## HL14   14 192 2.84 0.81 -0.17    -0.65 0.06
## HL15   15 192 3.12 0.68 -0.65     0.95 0.05
## HL16   16 192 2.82 0.66 -0.23     0.09 0.05
## HL17   17 192 3.38 0.64 -0.52    -0.67 0.05
## HL18   18 192 3.38 0.64 -0.54    -0.68 0.05
## HL19   19 192 2.88 0.74 -0.41     0.07 0.05
## HL20   20 192 2.88 0.72 -0.50     0.38 0.05
## HL21   21 192 2.99 0.69 -0.37     0.18 0.05
## HL22   22 192 3.05 0.75 -0.60     0.30 0.05
## HL23   23 192 3.00 0.64  0.00    -0.56 0.05
## HL24   24 192 2.96 0.67 -0.58     0.92 0.05

Veľkosť vzorky

nrow(data)
## [1] 192

Redukcia počtu kategórií v prípade nízkej frekvencie odpoveďovej kategórie

(odhad polychorickej kovariančnej matice predpokladá absenciu buniek HLa x HLb s nulovou frekvenciou)

data$HL1 <- ifelse(data$HL1 == 1, yes = 2, no = data$HL1)
data$HL2 <- ifelse(data$HL2 == 1, yes = 2, no = data$HL2)
data$HL3 <- ifelse(data$HL3 == 1, yes = 2, no = data$HL3)
data$HL4 <- ifelse(data$HL4 == 1, yes = 2, no = data$HL4)
data$HL5 <- ifelse(data$HL5 == 1, yes = 2, no = data$HL5)
data$HL6 <- ifelse(data$HL6 == 1, yes = 2, no = data$HL6)
data$HL7 <- ifelse(data$HL7 == 1, yes = 2, no = data$HL7)
data$HL8 <- ifelse(data$HL8 == 1, yes = 2, no = data$HL8)
data$HL9 <- ifelse(data$HL9 == 1, yes = 2, no = data$HL9)
data$HL10 <- ifelse(data$HL10 == 1, yes = 2, no = data$HL10)
data$HL11 <- ifelse(data$HL11 == 1, yes = 2, no = data$HL11)
data$HL12 <- ifelse(data$HL12 == 1, yes = 2, no = data$HL12)
data$HL13 <- ifelse(data$HL13 == 1, yes = 2, no = data$HL13)
data$HL14 <- ifelse(data$HL14 == 1, yes = 2, no = data$HL14)
data$HL15 <- ifelse(data$HL15 == 1, yes = 2, no = data$HL15)
data$HL16 <- ifelse(data$HL16 == 1, yes = 2, no = data$HL16)
data$HL17 <- ifelse(data$HL17 == 1, yes = 2, no = data$HL17)
data$HL18 <- ifelse(data$HL18 == 1, yes = 2, no = data$HL18)
data$HL19 <- ifelse(data$HL19 == 1, yes = 2, no = data$HL19)
data$HL20 <- ifelse(data$HL20 == 1, yes = 2, no = data$HL20)
data$HL21 <- ifelse(data$HL21 == 1, yes = 2, no = data$HL21)
data$HL22 <- ifelse(data$HL22 == 1, yes = 2, no = data$HL22)
data$HL23 <- ifelse(data$HL23 == 1, yes = 2, no = data$HL23)
data$HL24 <- ifelse(data$HL24 == 1, yes = 2, no = data$HL24)

Matica polychorických korelácií

polychoric.cor <- polychoric(data, correct = FALSE, smooth = TRUE,
                             global = FALSE, na.rm = TRUE)
round(polychoric.cor$rho, 2)
##       HL1  HL2  HL3  HL4  HL5  HL6  HL7  HL8  HL9 HL10 HL11 HL12 HL13 HL14
## HL1  1.00 0.45 0.39 0.59 0.45 0.23 0.38 0.38 0.40 0.46 0.39 0.26 0.40 0.26
## HL2  0.45 1.00 0.51 0.48 0.43 0.41 0.35 0.19 0.15 0.44 0.13 0.29 0.39 0.11
## HL3  0.39 0.51 1.00 0.44 0.44 0.28 0.25 0.30 0.29 0.32 0.18 0.29 0.52 0.35
## HL4  0.59 0.48 0.44 1.00 0.41 0.40 0.38 0.31 0.26 0.48 0.28 0.36 0.36 0.10
## HL5  0.45 0.43 0.44 0.41 1.00 0.42 0.34 0.39 0.35 0.43 0.23 0.22 0.34 0.22
## HL6  0.23 0.41 0.28 0.40 0.42 1.00 0.33 0.26 0.19 0.43 0.04 0.26 0.23 0.14
## HL7  0.38 0.35 0.25 0.38 0.34 0.33 1.00 0.44 0.35 0.41 0.41 0.42 0.37 0.16
## HL8  0.38 0.19 0.30 0.31 0.39 0.26 0.44 1.00 0.46 0.44 0.40 0.57 0.43 0.39
## HL9  0.40 0.15 0.29 0.26 0.35 0.19 0.35 0.46 1.00 0.45 0.44 0.33 0.35 0.48
## HL10 0.46 0.44 0.32 0.48 0.43 0.43 0.41 0.44 0.45 1.00 0.27 0.52 0.37 0.32
## HL11 0.39 0.13 0.18 0.28 0.23 0.04 0.41 0.40 0.44 0.27 1.00 0.41 0.38 0.24
## HL12 0.26 0.29 0.29 0.36 0.22 0.26 0.42 0.57 0.33 0.52 0.41 1.00 0.50 0.27
## HL13 0.40 0.39 0.52 0.36 0.34 0.23 0.37 0.43 0.35 0.37 0.38 0.50 1.00 0.33
## HL14 0.26 0.11 0.35 0.10 0.22 0.14 0.16 0.39 0.48 0.32 0.24 0.27 0.33 1.00
## HL15 0.40 0.36 0.39 0.32 0.36 0.25 0.32 0.34 0.47 0.42 0.25 0.20 0.38 0.47
## HL16 0.47 0.23 0.44 0.35 0.40 0.11 0.32 0.54 0.50 0.37 0.32 0.40 0.45 0.28
## HL17 0.45 0.36 0.28 0.37 0.12 0.27 0.30 0.24 0.31 0.38 0.19 0.17 0.21 0.31
## HL18 0.43 0.37 0.34 0.35 0.29 0.31 0.41 0.50 0.48 0.37 0.44 0.23 0.29 0.30
## HL19 0.42 0.33 0.23 0.35 0.27 0.05 0.45 0.42 0.35 0.40 0.28 0.36 0.33 0.35
## HL20 0.43 0.35 0.40 0.38 0.21 0.21 0.43 0.51 0.44 0.46 0.26 0.42 0.45 0.35
## HL21 0.25 0.32 0.34 0.34 0.45 0.22 0.36 0.44 0.33 0.37 0.31 0.40 0.52 0.26
## HL22 0.27 0.31 0.33 0.29 0.39 0.21 0.33 0.29 0.29 0.25 0.31 0.25 0.42 0.16
## HL23 0.46 0.38 0.37 0.36 0.33 0.27 0.34 0.34 0.52 0.38 0.44 0.32 0.44 0.38
## HL24 0.47 0.39 0.38 0.40 0.40 0.19 0.39 0.43 0.43 0.47 0.29 0.22 0.33 0.36
##      HL15 HL16 HL17 HL18 HL19 HL20 HL21 HL22 HL23 HL24
## HL1  0.40 0.47 0.45 0.43 0.42 0.43 0.25 0.27 0.46 0.47
## HL2  0.36 0.23 0.36 0.37 0.33 0.35 0.32 0.31 0.38 0.39
## HL3  0.39 0.44 0.28 0.34 0.23 0.40 0.34 0.33 0.37 0.38
## HL4  0.32 0.35 0.37 0.35 0.35 0.38 0.34 0.29 0.36 0.40
## HL5  0.36 0.40 0.12 0.29 0.27 0.21 0.45 0.39 0.33 0.40
## HL6  0.25 0.11 0.27 0.31 0.05 0.21 0.22 0.21 0.27 0.19
## HL7  0.32 0.32 0.30 0.41 0.45 0.43 0.36 0.33 0.34 0.39
## HL8  0.34 0.54 0.24 0.50 0.42 0.51 0.44 0.29 0.34 0.43
## HL9  0.47 0.50 0.31 0.48 0.35 0.44 0.33 0.29 0.52 0.43
## HL10 0.42 0.37 0.38 0.37 0.40 0.46 0.37 0.25 0.38 0.47
## HL11 0.25 0.32 0.19 0.44 0.28 0.26 0.31 0.31 0.44 0.29
## HL12 0.20 0.40 0.17 0.23 0.36 0.42 0.40 0.25 0.32 0.22
## HL13 0.38 0.45 0.21 0.29 0.33 0.45 0.52 0.42 0.44 0.33
## HL14 0.47 0.28 0.31 0.30 0.35 0.35 0.26 0.16 0.38 0.36
## HL15 1.00 0.48 0.48 0.54 0.34 0.52 0.49 0.25 0.34 0.41
## HL16 0.48 1.00 0.39 0.41 0.37 0.49 0.40 0.13 0.35 0.48
## HL17 0.48 0.39 1.00 0.57 0.18 0.24 0.23 0.30 0.45 0.41
## HL18 0.54 0.41 0.57 1.00 0.31 0.42 0.39 0.42 0.51 0.58
## HL19 0.34 0.37 0.18 0.31 1.00 0.47 0.47 0.35 0.39 0.58
## HL20 0.52 0.49 0.24 0.42 0.47 1.00 0.50 0.42 0.39 0.53
## HL21 0.49 0.40 0.23 0.39 0.47 0.50 1.00 0.41 0.29 0.48
## HL22 0.25 0.13 0.30 0.42 0.35 0.42 0.41 1.00 0.47 0.32
## HL23 0.34 0.35 0.45 0.51 0.39 0.39 0.29 0.47 1.00 0.57
## HL24 0.41 0.48 0.41 0.58 0.58 0.53 0.48 0.32 0.57 1.00

Priemerná korelácia

polychoric.cor.low <- polychoric.cor$rho[lower.tri(polychoric.cor$rho)]
mean(abs(polychoric.cor.low))
## [1] 0.3578521

Výpočet polychorickej kovariančnej matice

SDs <- describe(data, na.rm = TRUE)$sd
polychoric.cov <- cor2cov(R = polychoric.cor$rho, sds = SDs)

Definovanie, test a estimácia CFA modelu

Špecifikácia 5-faktorového modelu merania

model <- '
theor_know =~ a*HL1 + b*HL8 + c*HL14 + d*HL18
prac_know =~ f*HL2 + g*HL4 + h*HL6 + i*HL10 + j*HL17
crit_think =~ k*HL7 + l*HL12 + m*HL16 + n*HL21 + o*HL24
self_aware =~ p*HL5 + q*HL11 + r*HL15 + s*HL19 + t*HL22
citizenship =~ u*HL3 + v*HL9 + x*HL13 + y*HL20 + z*HL23
'

Estimácia a test modelu, podľa Muthén, 1984

fitted.model <- cfa(model = model, data = data, meanstructure = TRUE, std.lv = TRUE, mimic = "Mplus",
                    estimator = "WLSMVS", test = "Satterthwaite", orthogonal = FALSE, bootstrap = 5000,
                    ordered = c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9", "HL10",
                                "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17", "HL18", "HL19",
                                "HL20", "HL21", "HL22", "HL23", "HL24"))
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL2 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL4 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL10 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL17 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL16 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL17 x
## HL14
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL10 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL17 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL7 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL16 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL11 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL9 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL20 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL23 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL3 x
## HL2
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL10
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL13 x
## HL17
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL23 x
## HL17
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL7
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL16
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL19 x
## HL24
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL3 x
## HL5
## Warning in lav_object_post_check(lavobject): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use inspect(fit,"cov.lv") to investigate.

Počet buniek HLa x HLb s nulovou frekvenciou je tak na hrane. Majú malú vzorku a tým pádom nízke frekvencie v rámci odpoveďových kategórií.

Analýza štatistickej sily pre test blízkej zhody (na základe RMSEA distribúcie)

Štatistická sila pre detekciu chybného modelu (RMSEA > .08)

df <- fitted.model@test[[1]]$df
alfa <- .05
n <- nrow(data)
rmsea0 <- .05           # RMSEA za predpokladu H0
rmseaa <- .08           # RMSEA za predpokladu H1

ncp0 <- (n-1)*df*rmsea0**2 ;
ncpa <-(n-1)*df*rmseaa**2 ;
if(rmsea0 < rmseaa) {
  cval <- qchisq(1-alfa,df=df,ncp=ncp0)
  sila.rmsea <- 1 - pchisq(cval,df=df,ncp=ncpa)
} else {
  cval <- qchisq(alfa,df=df,ncp=ncp0)
  sila.rmsea <- pchisq(cval,df=df,ncp=ncpa)
}
rm(ncp0, ncpa, cval)
print(round(sila.rmsea,10))
## [1] 0.9996262

Výsledky

Kovariančná matica je non-positive definite z dôvodu, že viaceré z definovaných latentných premenných su kolineárne (de facto identické). Päť z korelácií v rámci štrukturálneho modelu sú väčšie ako 1.

eigen(inspect(fitted.model, "cov.lv") )$values
## [1]  4.875304732  0.251617310  0.005002159 -0.038336690 -0.093587511

Štvrtá a piata eigenvalue majú negatívnu ale nízku hodnotu, výsledky testu modelu sú interpretovateľné.

Test modelu, odhady voľných parametrov (faktorové náboje)

Stačí si všímať “Robust” test, Latent variable, Covariances a R-square. Intercepts, Thresholds, Intercepts (…) môžte kľudne ignorovať.

summary(fitted.model, standardized = TRUE, rsquare = TRUE)
## lavaan (0.5-22) converged normally after  35 iterations
## 
##   Number of observations                           192
## 
##   Estimator                                       DWLS      Robust
##   Minimum Function Test Statistic              321.160     147.697
##   Degrees of freedom                               242          68
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  2.174
##     for the mean and variance adjusted correction (WLSMV)
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   theor_know =~                                                         
##     HL1        (a)    0.653    0.054   12.017    0.000    0.653    0.653
##     HL8        (b)    0.668    0.050   13.301    0.000    0.668    0.668
##     HL14       (c)    0.484    0.061    7.883    0.000    0.484    0.484
##     HL18       (d)    0.683    0.045   15.026    0.000    0.683    0.683
##   prac_know =~                                                          
##     HL2        (f)    0.635    0.056   11.379    0.000    0.635    0.635
##     HL4        (g)    0.689    0.056   12.273    0.000    0.689    0.689
##     HL6        (h)    0.479    0.070    6.839    0.000    0.479    0.479
##     HL10       (i)    0.753    0.046   16.312    0.000    0.753    0.753
##     HL17       (j)    0.612    0.064    9.565    0.000    0.612    0.612
##   crit_think =~                                                         
##     HL7        (k)    0.588    0.053   11.073    0.000    0.588    0.588
##     HL12       (l)    0.576    0.057   10.171    0.000    0.576    0.576
##     HL16       (m)    0.639    0.051   12.604    0.000    0.639    0.639
##     HL21       (n)    0.628    0.051   12.222    0.000    0.628    0.628
##     HL24       (o)    0.695    0.049   14.120    0.000    0.695    0.695
##   self_aware =~                                                         
##     HL5        (p)    0.550    0.062    8.814    0.000    0.550    0.550
##     HL11       (q)    0.499    0.057    8.776    0.000    0.499    0.499
##     HL15       (r)    0.622    0.047   13.158    0.000    0.622    0.622
##     HL19       (s)    0.579    0.056   10.255    0.000    0.579    0.579
##     HL22       (t)    0.502    0.062    8.064    0.000    0.502    0.502
##   citizenship =~                                                        
##     HL3        (u)    0.589    0.060    9.809    0.000    0.589    0.589
##     HL9        (v)    0.645    0.047   13.731    0.000    0.645    0.645
##     HL13       (x)    0.651    0.048   13.510    0.000    0.651    0.651
##     HL20       (y)    0.698    0.048   14.504    0.000    0.698    0.698
##     HL23       (z)    0.672    0.047   14.246    0.000    0.672    0.672
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   theor_know ~~                                                         
##     prac_know         0.888    0.057   15.586    0.000    0.888    0.888
##     crit_think        1.034    0.050   20.491    0.000    1.034    1.034
##     self_aware        1.074    0.057   18.790    0.000    1.074    1.074
##     citizenship       0.997    0.048   20.956    0.000    0.997    0.997
##   prac_know ~~                                                          
##     crit_think        0.852    0.055   15.614    0.000    0.852    0.852
##     self_aware        0.865    0.066   13.011    0.000    0.865    0.865
##     citizenship       0.815    0.053   15.274    0.000    0.815    0.815
##   crit_think ~~                                                         
##     self_aware        1.081    0.040   27.003    0.000    1.081    1.081
##     citizenship       1.018    0.040   25.442    0.000    1.018    1.018
##   self_aware ~~                                                         
##     citizenship       1.035    0.042   24.546    0.000    1.035    1.035
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.000                               0.000    0.000
##    .HL8               0.000                               0.000    0.000
##    .HL14              0.000                               0.000    0.000
##    .HL18              0.000                               0.000    0.000
##    .HL2               0.000                               0.000    0.000
##    .HL4               0.000                               0.000    0.000
##    .HL6               0.000                               0.000    0.000
##    .HL10              0.000                               0.000    0.000
##    .HL17              0.000                               0.000    0.000
##    .HL7               0.000                               0.000    0.000
##    .HL12              0.000                               0.000    0.000
##    .HL16              0.000                               0.000    0.000
##    .HL21              0.000                               0.000    0.000
##    .HL24              0.000                               0.000    0.000
##    .HL5               0.000                               0.000    0.000
##    .HL11              0.000                               0.000    0.000
##    .HL15              0.000                               0.000    0.000
##    .HL19              0.000                               0.000    0.000
##    .HL22              0.000                               0.000    0.000
##    .HL3               0.000                               0.000    0.000
##    .HL9               0.000                               0.000    0.000
##    .HL13              0.000                               0.000    0.000
##    .HL20              0.000                               0.000    0.000
##    .HL23              0.000                               0.000    0.000
##     theor_know        0.000                               0.000    0.000
##     prac_know         0.000                               0.000    0.000
##     crit_think        0.000                               0.000    0.000
##     self_aware        0.000                               0.000    0.000
##     citizenship       0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1|t1           -1.176    0.118  -10.000    0.000   -1.176   -1.176
##     HL1|t2            0.776    0.101    7.660    0.000    0.776    0.776
##     HL8|t1           -0.549    0.096   -5.724    0.000   -0.549   -0.549
##     HL8|t2            1.010    0.110    9.209    0.000    1.010    1.010
##     HL14|t1          -0.416    0.094   -4.449    0.000   -0.416   -0.416
##     HL14|t2           0.776    0.101    7.660    0.000    0.776    0.776
##     HL18|t1          -1.350    0.128  -10.535    0.000   -1.350   -1.350
##     HL18|t2           0.078    0.091    0.864    0.388    0.078    0.078
##     HL2|t1           -1.101    0.114   -9.677    0.000   -1.101   -1.101
##     HL2|t2            0.610    0.097    6.285    0.000    0.610    0.610
##     HL4|t1           -0.849    0.104   -8.194    0.000   -0.849   -0.849
##     HL4|t2            0.610    0.097    6.285    0.000    0.610    0.610
##     HL6|t1           -1.078    0.113   -9.563    0.000   -1.078   -1.078
##     HL6|t2            0.264    0.092    2.876    0.004    0.264    0.264
##     HL10|t1          -0.812    0.102   -7.929    0.000   -0.812   -0.812
##     HL10|t2           1.010    0.110    9.209    0.000    1.010    1.010
##     HL17|t1          -1.383    0.130  -10.602    0.000   -1.383   -1.383
##     HL17|t2           0.092    0.091    1.008    0.314    0.092    0.092
##     HL7|t1           -0.579    0.096   -6.005    0.000   -0.579   -0.579
##     HL7|t2            0.967    0.108    8.964    0.000    0.967    0.967
##     HL12|t1          -0.595    0.097   -6.145    0.000   -0.595   -0.595
##     HL12|t2           1.032    0.111    9.329    0.000    1.032    1.032
##     HL16|t1          -0.579    0.096   -6.005    0.000   -0.579   -0.579
##     HL16|t2           1.176    0.118   10.000    0.000    1.176    1.176
##     HL21|t1          -0.849    0.104   -8.194    0.000   -0.849   -0.849
##     HL21|t2           0.794    0.102    7.795    0.000    0.794    0.794
##     HL24|t1          -0.907    0.106   -8.584    0.000   -0.907   -0.907
##     HL24|t2           0.947    0.107    8.838    0.000    0.947    0.947
##     HL5|t1           -1.258    0.122  -10.291    0.000   -1.258   -1.258
##     HL5|t2            0.549    0.096    5.724    0.000    0.549    0.549
##     HL11|t1          -0.927    0.106   -8.712    0.000   -0.927   -0.927
##     HL11|t2           0.674    0.099    6.841    0.000    0.674    0.674
##     HL15|t1          -1.150    0.116   -9.896    0.000   -1.150   -1.150
##     HL15|t2           0.610    0.097    6.285    0.000    0.610    0.610
##     HL19|t1          -0.642    0.098   -6.564    0.000   -0.642   -0.642
##     HL19|t2           0.927    0.106    8.712    0.000    0.927    0.927
##     HL22|t1          -0.907    0.106   -8.584    0.000   -0.907   -0.907
##     HL22|t2           0.610    0.097    6.285    0.000    0.610    0.610
##     HL3|t1           -0.759    0.101   -7.525    0.000   -0.759   -0.759
##     HL3|t2            0.887    0.105    8.455    0.000    0.887    0.887
##     HL9|t1           -0.725    0.100   -7.253    0.000   -0.725   -0.725
##     HL9|t2            0.759    0.101    7.525    0.000    0.759    0.759
##     HL13|t1          -0.794    0.102   -7.795    0.000   -0.794   -0.794
##     HL13|t2           0.907    0.106    8.584    0.000    0.907    0.907
##     HL20|t1          -0.708    0.099   -7.116    0.000   -0.708   -0.708
##     HL20|t2           0.988    0.109    9.087    0.000    0.988    0.988
##     HL23|t1          -0.831    0.103   -8.062    0.000   -0.831   -0.831
##     HL23|t2           0.831    0.103    8.062    0.000    0.831    0.831
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.573                               0.573    0.573
##    .HL8               0.554                               0.554    0.554
##    .HL14              0.766                               0.766    0.766
##    .HL18              0.534                               0.534    0.534
##    .HL2               0.597                               0.597    0.597
##    .HL4               0.525                               0.525    0.525
##    .HL6               0.771                               0.771    0.771
##    .HL10              0.432                               0.432    0.432
##    .HL17              0.626                               0.626    0.626
##    .HL7               0.654                               0.654    0.654
##    .HL12              0.668                               0.668    0.668
##    .HL16              0.592                               0.592    0.592
##    .HL21              0.605                               0.605    0.605
##    .HL24              0.517                               0.517    0.517
##    .HL5               0.698                               0.698    0.698
##    .HL11              0.751                               0.751    0.751
##    .HL15              0.613                               0.613    0.613
##    .HL19              0.665                               0.665    0.665
##    .HL22              0.748                               0.748    0.748
##    .HL3               0.653                               0.653    0.653
##    .HL9               0.584                               0.584    0.584
##    .HL13              0.576                               0.576    0.576
##    .HL20              0.513                               0.513    0.513
##    .HL23              0.548                               0.548    0.548
##     theor_know        1.000                               1.000    1.000
##     prac_know         1.000                               1.000    1.000
##     crit_think        1.000                               1.000    1.000
##     self_aware        1.000                               1.000    1.000
##     citizenship       1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1               1.000                               1.000    1.000
##     HL8               1.000                               1.000    1.000
##     HL14              1.000                               1.000    1.000
##     HL18              1.000                               1.000    1.000
##     HL2               1.000                               1.000    1.000
##     HL4               1.000                               1.000    1.000
##     HL6               1.000                               1.000    1.000
##     HL10              1.000                               1.000    1.000
##     HL17              1.000                               1.000    1.000
##     HL7               1.000                               1.000    1.000
##     HL12              1.000                               1.000    1.000
##     HL16              1.000                               1.000    1.000
##     HL21              1.000                               1.000    1.000
##     HL24              1.000                               1.000    1.000
##     HL5               1.000                               1.000    1.000
##     HL11              1.000                               1.000    1.000
##     HL15              1.000                               1.000    1.000
##     HL19              1.000                               1.000    1.000
##     HL22              1.000                               1.000    1.000
##     HL3               1.000                               1.000    1.000
##     HL9               1.000                               1.000    1.000
##     HL13              1.000                               1.000    1.000
##     HL20              1.000                               1.000    1.000
##     HL23              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     HL1               0.427
##     HL8               0.446
##     HL14              0.234
##     HL18              0.466
##     HL2               0.403
##     HL4               0.475
##     HL6               0.229
##     HL10              0.568
##     HL17              0.374
##     HL7               0.346
##     HL12              0.332
##     HL16              0.408
##     HL21              0.395
##     HL24              0.483
##     HL5               0.302
##     HL11              0.249
##     HL15              0.387
##     HL19              0.335
##     HL22              0.252
##     HL3               0.347
##     HL9               0.416
##     HL13              0.424
##     HL20              0.487
##     HL23              0.452

Test modelu, indexy blízkej zhody modelu a dát

Treba si všímať .scaled indexy

fitMeasures(fitted.model)
##                          npar                          fmin 
##                        82.000                         0.836 
##                         chisq                            df 
##                       321.160                       242.000 
##                        pvalue                  chisq.scaled 
##                         0.000                       147.697 
##                     df.scaled                 pvalue.scaled 
##                        68.000                         0.000 
##          chisq.scaling.factor                baseline.chisq 
##                         2.174                      7324.149 
##                   baseline.df               baseline.pvalue 
##                       276.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled 
##                       746.920                        28.000 
##        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                         0.000                         9.806 
##                           cfi                           tli 
##                         0.989                         0.987 
##                          nnfi                           rfi 
##                         0.987                         0.950 
##                           nfi                          pnfi 
##                         0.956                         0.838 
##                           ifi                           rni 
##                         0.989                         0.989 
##                    cfi.scaled                    tli.scaled 
##                         0.889                         0.954 
##                    cfi.robust                    tli.robust 
##                            NA                            NA 
##                   nnfi.scaled                   nnfi.robust 
##                         0.954                            NA 
##                    rfi.scaled                    nfi.scaled 
##                         0.919                         0.802 
##                    ifi.scaled                    rni.scaled 
##                         0.802                         0.989 
##                    rni.robust                         rmsea 
##                            NA                         0.041 
##                rmsea.ci.lower                rmsea.ci.upper 
##                         0.028                         0.053 
##                  rmsea.pvalue                  rmsea.scaled 
##                         0.884                         0.078 
##         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.067                         0.090 
##           rmsea.pvalue.scaled                  rmsea.robust 
##                         0.000                            NA 
##         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                            NA                            NA 
##           rmsea.pvalue.robust                           rmr 
##                            NA                         0.075 
##                    rmr_nomean                          srmr 
##                         0.078                         0.075 
##                  srmr_bentler           srmr_bentler_nomean 
##                         0.075                         0.078 
##                   srmr_bollen            srmr_bollen_nomean 
##                         0.075                         0.078 
##                    srmr_mplus             srmr_mplus_nomean 
##                         0.075                         0.078 
##                         cn_05                         cn_01 
##                       167.098                       177.097 
##                           gfi                          agfi 
##                         0.969                         0.958 
##                          pgfi                           mfi 
##                         0.724                         0.813

Diagram

semPaths(fitted.model, style = "mx", layout = "circle",
         edge.label.cex = 0.5, sizeLat = 5, nCharNodes = 0,
         nDigits = 2, "Standardized", intercepts = FALSE,
         residuals = TRUE, exoVar = FALSE, fade = TRUE,
         groups = "latents", pastel = TRUE)

Test modelu indikuje prítomnosť chybnej špecifikácie modelu. Popri indexoch blízkej zhody je preto potrebné analyzovať lokálne zdroje chybnej špecifikácie na základe matice reziduálnych korelácií

Matica reziduálnych korelácií

residuals <- residuals(fitted.model, type = "cor")$cor
residuals
##      HL1    HL8    HL14   HL18   HL2    HL4    HL6    HL10   HL17   HL7   
## HL1   0.000                                                               
## HL8  -0.051  0.000                                                        
## HL14 -0.054  0.068  0.000                                                 
## HL18 -0.019  0.049 -0.032  0.000                                          
## HL2   0.084 -0.190 -0.166 -0.013  0.000                                   
## HL4   0.194 -0.103 -0.195 -0.072  0.043  0.000                            
## HL6  -0.048 -0.024 -0.063  0.024  0.104  0.070  0.000                     
## HL10  0.020 -0.002 -0.008 -0.091 -0.042 -0.041  0.071  0.000              
## HL17  0.100 -0.120  0.051  0.199 -0.029 -0.055 -0.024 -0.084  0.000       
## HL7  -0.020  0.031 -0.139 -0.001  0.036  0.040  0.092  0.035 -0.009  0.000
## HL12 -0.126  0.172 -0.019 -0.174 -0.025  0.018  0.022  0.146 -0.133  0.082
## HL16  0.043  0.097 -0.036 -0.042 -0.114 -0.023 -0.150 -0.040  0.056 -0.058
## HL21 -0.172  0.010 -0.057 -0.050 -0.015 -0.027 -0.041 -0.038 -0.094 -0.008
## HL24 -0.003 -0.050  0.015  0.089  0.011 -0.013 -0.093  0.021  0.051 -0.023
## HL5   0.062 -0.007 -0.066 -0.112  0.130  0.082  0.191  0.068 -0.174 -0.011
## HL11  0.038  0.040 -0.016  0.070 -0.141 -0.017 -0.168 -0.056 -0.070  0.090
## HL15 -0.038 -0.103  0.151  0.083  0.015 -0.054 -0.008  0.010  0.148 -0.078
## HL19  0.017  0.008  0.052 -0.111  0.009  0.008 -0.191  0.025 -0.125  0.086
## HL22 -0.083 -0.069 -0.101  0.054  0.037 -0.014 -0.002 -0.080  0.031  0.007
## HL3   0.004 -0.094  0.067 -0.060  0.210  0.109  0.054 -0.040 -0.014 -0.100
## HL9  -0.022  0.033  0.172  0.040 -0.187 -0.104 -0.057  0.056 -0.010 -0.039
## HL13 -0.024 -0.003  0.021 -0.154  0.049 -0.006 -0.029 -0.025 -0.115 -0.020
## HL20 -0.029  0.043  0.010 -0.052 -0.007 -0.009 -0.063  0.028 -0.108  0.014
## HL23  0.024 -0.103  0.051  0.054  0.035 -0.015  0.010 -0.031  0.117 -0.058
##      HL12   HL16   HL21   HL24   HL5    HL11   HL15   HL19   HL22   HL3   
## HL1                                                                       
## HL8                                                                       
## HL14                                                                      
## HL18                                                                      
## HL2                                                                       
## HL4                                                                       
## HL6                                                                       
## HL10                                                                      
## HL17                                                                      
## HL7                                                                       
## HL12  0.000                                                               
## HL16  0.036  0.000                                                        
## HL21  0.043 -0.003  0.000                                                 
## HL24 -0.178  0.040  0.045  0.000                                          
## HL5  -0.123  0.020  0.082 -0.012  0.000                                   
## HL11  0.097 -0.021 -0.027 -0.080 -0.045  0.000                            
## HL15 -0.191  0.051  0.071 -0.057  0.020 -0.061  0.000                     
## HL19 -0.001 -0.030  0.074  0.149 -0.046 -0.007 -0.022  0.000              
## HL22 -0.062 -0.219  0.068 -0.056  0.117  0.064 -0.058  0.059  0.000       
## HL3  -0.053  0.053 -0.039 -0.037  0.106 -0.121  0.008 -0.126  0.027  0.000
## HL9  -0.050  0.084 -0.081 -0.031 -0.020  0.111  0.050 -0.036 -0.043 -0.093
## HL13  0.121  0.028  0.103 -0.127 -0.035  0.040 -0.044 -0.063  0.078  0.135
## HL20  0.015  0.038  0.057  0.033 -0.187 -0.098  0.069  0.050  0.053 -0.012
## HL23 -0.072 -0.084 -0.141  0.096 -0.055  0.092 -0.093 -0.012  0.125 -0.026
##      HL9    HL13   HL20   HL23  
## HL1                             
## HL8                             
## HL14                            
## HL18                            
## HL2                             
## HL4                             
## HL6                             
## HL10                            
## HL17                            
## HL7                             
## HL12                            
## HL16                            
## HL21                            
## HL24                            
## HL5                             
## HL11                            
## HL15                            
## HL19                            
## HL22                            
## HL3                             
## HL9   0.000                     
## HL13 -0.066  0.000              
## HL20 -0.006  0.000  0.000       
## HL23  0.089  0.000 -0.075  0.000

Pre prehladnejšiu vizualizáciu, matica reziduí s vyznačenými reziduálnymi hodnotami > .1 (štandardizované z-reziduá je možné odhadnúť iba v prípade použitia estimátora z rodiny maximum likelihood. Arbitrárna hodnota .1 preto, lebo neumožní produkt dvoch nábojov > .3)

Počet premenných

p = 24

Ak máme v matici (p(p+1)/2 - p) = 300 elementov, tak

(p*(p+1)/2 - p)*.05
## [1] 13.8

z nich môže byť signifikantných na hladine alfa = .05

HRUBÁ APROXIMÁCIA - približne tolko elementov môže byť > .1 Diag = diagonála, >.1 = reziduálna hodnota vyššia ako .1

ifelse(residuals == 0, "Diag", ifelse(residuals > .1, ">.1", "."))
##      HL1    HL8    HL14   HL18   HL2    HL4    HL6    HL10   HL17   HL7   
## HL1  "Diag" "."    "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL8  "."    "Diag" "."    "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "Diag" "."    "."    "."    "."    "."    "."    "."   
## HL18 "."    "."    "."    "Diag" "."    "."    "."    "."    ">.1"  "."   
## HL2  "."    "."    "."    "."    "Diag" "."    ">.1"  "."    "."    "."   
## HL4  ">.1"  "."    "."    "."    "."    "Diag" "."    "."    "."    "."   
## HL6  "."    "."    "."    "."    ">.1"  "."    "Diag" "."    "."    "."   
## HL10 "."    "."    "."    "."    "."    "."    "."    "Diag" "."    "."   
## HL17 "."    "."    "."    ">.1"  "."    "."    "."    "."    "Diag" "."   
## HL7  "."    "."    "."    "."    "."    "."    "."    "."    "."    "Diag"
## HL12 "."    ">.1"  "."    "."    "."    "."    "."    ">.1"  "."    "."   
## HL16 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL21 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL24 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL5  "."    "."    "."    "."    ">.1"  "."    ">.1"  "."    "."    "."   
## HL11 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL15 "."    "."    ">.1"  "."    "."    "."    "."    "."    ">.1"  "."   
## HL19 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL22 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL3  "."    "."    "."    "."    ">.1"  ">.1"  "."    "."    "."    "."   
## HL9  "."    "."    ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL13 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL23 "."    "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
##      HL12   HL16   HL21   HL24   HL5    HL11   HL15   HL19   HL22   HL3   
## HL1  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL8  ">.1"  "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL18 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL2  "."    "."    "."    "."    ">.1"  "."    "."    "."    "."    ">.1" 
## HL4  "."    "."    "."    "."    "."    "."    "."    "."    "."    ">.1" 
## HL6  "."    "."    "."    "."    ">.1"  "."    "."    "."    "."    "."   
## HL10 ">.1"  "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL17 "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL7  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL12 "Diag" "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL16 "."    "Diag" "."    "."    "."    "."    "."    "."    "."    "."   
## HL21 "."    "."    "Diag" "."    "."    "."    "."    "."    "."    "."   
## HL24 "."    "."    "."    "Diag" "."    "."    "."    ">.1"  "."    "."   
## HL5  "."    "."    "."    "."    "Diag" "."    "."    "."    ">.1"  ">.1" 
## HL11 "."    "."    "."    "."    "."    "Diag" "."    "."    "."    "."   
## HL15 "."    "."    "."    "."    "."    "."    "Diag" "."    "."    "."   
## HL19 "."    "."    "."    ">.1"  "."    "."    "."    "Diag" "."    "."   
## HL22 "."    "."    "."    "."    ">.1"  "."    "."    "."    "Diag" "."   
## HL3  "."    "."    "."    "."    ">.1"  "."    "."    "."    "."    "Diag"
## HL9  "."    "."    "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL13 ">.1"  "."    ">.1"  "."    "."    "."    "."    "."    "."    ">.1" 
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL23 "."    "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
##      HL9    HL13   HL20   HL23  
## HL1  "."    "."    "."    "."   
## HL8  "."    "."    "."    "."   
## HL14 ">.1"  "."    "."    "."   
## HL18 "."    "."    "."    "."   
## HL2  "."    "."    "."    "."   
## HL4  "."    "."    "."    "."   
## HL6  "."    "."    "."    "."   
## HL10 "."    "."    "."    "."   
## HL17 "."    "."    "."    ">.1" 
## HL7  "."    "."    "."    "."   
## HL12 "."    ">.1"  "."    "."   
## HL16 "."    "."    "."    "."   
## HL21 "."    ">.1"  "."    "."   
## HL24 "."    "."    "."    "."   
## HL5  "."    "."    "."    "."   
## HL11 ">.1"  "."    "."    "."   
## HL15 "."    "."    "."    "."   
## HL19 "."    "."    "."    "."   
## HL22 "."    "."    "."    ">.1" 
## HL3  "."    ">.1"  "."    "."   
## HL9  "Diag" "."    "."    "."   
## HL13 "."    "Diag" "."    "."   
## HL20 "."    "."    "Diag" "."   
## HL23 "."    "."    "."    "Diag"

Odhad reliability

rel.HLQ.collumns <- full.data %>% select(HL1:HL24, ID3)
delete.na <- function(rel.HLQ.collumns, n=NULL) {
  rel.HLQ.collumns[rowSums(is.na(rel.HLQ.collumns)) <= n,]
}
rel.HLQ.na.rm <- delete.na(rel.HLQ.collumns, n = 10)

Odhad internej konzistencie - Cronbachova alfa

alpha(rel.HLQ.na.rm[,c("HL1", "HL8", "HL14", "HL18")], na.rm = TRUE)$total$std.alpha # pre theor_know
## [1] 0.664335
alpha(rel.HLQ.na.rm[,c("HL2", "HL4", "HL6", "HL10", "HL17")], na.rm = TRUE)$total$std.alpha # pre prac_know
## [1] 0.7288641
alpha(rel.HLQ.na.rm[,c("HL7", "HL12", "HL16", "HL21", "HL24")], na.rm = TRUE)$total$std.alpha # pre crit_think
## [1] 0.7867088
alpha(rel.HLQ.na.rm[,c("HL5", "HL11", "HL15", "HL19", "HL22")], na.rm = TRUE)$total$std.alpha # pre self_aware
## [1] 0.7189408
alpha(rel.HLQ.na.rm[,c("HL3", "HL9", "HL13", "HL20", "HL23")], na.rm = TRUE)$total$std.alpha # pre citizenship
## [1] 0.7546782

Odhad stability v čase

Výpočet sumárneho skóre každej z 5 dimenzií HL

rel.HLQ.na.rm$theor_know <- rowMeans(rel.HLQ.na.rm[,c("HL1", "HL8", "HL14", "HL18")], na.rm = TRUE)
rel.HLQ.na.rm$prac_know <- rowMeans(rel.HLQ.na.rm[,c("HL2", "HL4", "HL6", "HL10", "HL17")], na.rm = TRUE)
rel.HLQ.na.rm$crit_think <- rowMeans(rel.HLQ.na.rm[,c("HL7", "HL12", "HL16", "HL21", "HL24")], na.rm = TRUE)
rel.HLQ.na.rm$self_aware <- rowMeans(rel.HLQ.na.rm[,c("HL5", "HL11", "HL15", "HL19", "HL22")], na.rm = TRUE)
rel.HLQ.na.rm$citizenship <- rowMeans(rel.HLQ.na.rm[,c("HL3", "HL9", "HL13", "HL20", "HL23")], na.rm = TRUE)

Výpočet sumárneho skóre každej z 5 dimenzií HL - RETEST

#rel.HLQ.na.rm$Rtheor_know <- rowMeans(rel.HLQ.na.rm[,c("RHL1", "RHL8", "RHL14", "RHL18")], na.rm = TRUE)
#rel.HLQ.na.rm$Rprac_know <- rowMeans(rel.HLQ.na.rm[,c("RHL2", "RHL4", "RHL6", "RHL10", "RHL17")], na.rm = TRUE)
#rel.HLQ.na.rm$Rcrit_think <- rowMeans(rel.HLQ.na.rm[,c("RHL7", "RHL12", "RHL16", "RHL21", "RHL24")], na.rm = TRUE)
#rel.HLQ.na.rm$Rself_aware <- rowMeans(rel.HLQ.na.rm[,c("RHL5", "RHL11", "RHL15", "RHL19", "RHL22")], na.rm = TRUE)
#rel.HLQ.na.rm$Rcitizenship <- rowMeans(rel.HLQ.na.rm[,c("RHL3", "RHL9", "RHL13", "RHL20", "RHL23")], na.rm = TRUE)

Test-retest korelácia

#with(rel.HLQ.na.rm, cor.test(theor_know, Rtheor_know))$estimate # pre theor_know
#with(rel.HLQ.na.rm, cor.test(crit_think, Rcrit_think))$estimate # pre crit_think
##with(rel.HLQ.na.rm, cor.test(prac_know, Rprac_know))$estimate # pre prac_know
#with(rel.HLQ.na.rm, cor.test(self_aware, Rself_aware))$estimate # pre self_aware
#with(rel.HLQ.na.rm, cor.test(citizenship, Rcitizenship))$estimate # pre citizenship

Intra-class korelácie pre 5 dimenzií HL

Overenie prítomnosti hierarchickej štruktúry v dátach, ktorá mohla vznikúť použitým spôsobom vzorkovania populácie (cluster sampling) Cluster = školská trieda (premenná ID3)

ICCs <- (lapply(rel.HLQ.na.rm[,c("theor_know", "prac_know", "crit_think", "self_aware", "citizenship")],
                function(x){ICCest(ID3, x, rel.HLQ.na.rm)}))
## NAs removed from rows:
##  1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
## Warning in ICCest(ID3, x, rel.HLQ.na.rm):
## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor
## NAs removed from rows:
##  1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
## Warning in ICCest(ID3, x, rel.HLQ.na.rm):

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor
## NAs removed from rows:
##  1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
## Warning in ICCest(ID3, x, rel.HLQ.na.rm):

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor
## NAs removed from rows:
##  1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
## Warning in ICCest(ID3, x, rel.HLQ.na.rm):

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor
## NAs removed from rows:
##  1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
## Warning in ICCest(ID3, x, rel.HLQ.na.rm):

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor
ICCs$theor_know$ICC # ICC pre theor_know
## [1] 0.1361273
ICCs$prac_know$ICC # ICC pre prac_know
## [1] 0.06576667
ICCs$crit_think$ICC # ICC pre crit_think
## [1] 0.1114863
ICCs$self_aware$ICC # ICC pre self_aware
## [1] 0.07610024
ICCs$citizenship$ICC # ICC pre citizenship
## [1] 0.05677021

Intra-class korelácie už nie sú zanedbateľnéá (viď ICC pre theor_know a crit_think). Dáta majú už mierne hierarchickú štruktúru, čo bez použitia multi-level techník skresľuje odhady.

Alternatívny model

Špecifikácia jednofaktorového modelu

model2 <- '
HLQ =~ a*HL1 + b*HL2 + c*HL3 + d*HL4 + e*HL5 + f*HL6 + g*HL7 + h*HL8 + i*HL9 +
j*HL10 + k*HL11 + l*HL12 + m*HL13 + n*HL14 + o*HL15 + p*HL16 + q*HL17 + r*HL18 +
s*HL19 + t*HL20 + u*HL21 + v*HL22 + x*HL23 + y*HL24
'

Estimácia a test jednofaktorového modelu, podľa Muthén, 1984

fitted.model2 <- cfa(model = model2, data = data, meanstructure = TRUE, std.lv = TRUE, mimic = "Mplus",
                     estimator = "WLSMVS", test = "Satterthwaite", bootstrap = 5000,
                     ordered = c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9", "HL10",
                                 "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17", "HL18", "HL19",
                                 "HL20", "HL21", "HL22", "HL23", "HL24"))
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL2 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL4 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL10 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL16 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL17 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL1
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL3 x
## HL2
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL5 x
## HL3
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL7
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL7
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL9
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL15 x
## HL10
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL10
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL11
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL17 x
## HL13
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL17 x
## HL14
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL16 x
## HL15
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL15
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL16
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL18 x
## HL17
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL23 x
## HL17
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL20 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL23 x
## HL18
## Warning in pc_cor_TS(fit.y1 = UNI[[i]], fit.y2 = UNI[[j]], method =
## optim.method, : lavaan WARNING: empty cell(s) in bivariate table of HL24 x
## HL19

Počet buniek HLa x HLb s nulovou frekvenciou je tak na hrane. Majú malú vzorku a tým pádom nízke frekvencie v rámci odpoveďových kategórií.

Test modelu, odhady voľných parametrov (faktorové náboje)

Stačí si všímať “Robust” test, Latent variable, Covariances a R-square. Intercepts, Thresholds, Intercepts (…) môžte kľudne ignorovať.

summary(fitted.model2, standardized = TRUE, rsquare = TRUE)
## lavaan (0.5-22) converged normally after  15 iterations
## 
##   Number of observations                           192
## 
##   Estimator                                       DWLS      Robust
##   Minimum Function Test Statistic              342.956     153.181
##   Degrees of freedom                               252          69
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  2.239
##     for the mean and variance adjusted correction (WLSMV)
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HLQ =~                                                                
##     HL1        (a)    0.662    0.050   13.200    0.000    0.662    0.662
##     HL2        (b)    0.566    0.058    9.776    0.000    0.566    0.566
##     HL3        (c)    0.583    0.058   10.057    0.000    0.583    0.583
##     HL4        (d)    0.611    0.054   11.228    0.000    0.611    0.611
##     HL5        (e)    0.568    0.060    9.401    0.000    0.568    0.568
##     HL6        (f)    0.425    0.067    6.305    0.000    0.425    0.425
##     HL7        (g)    0.594    0.052   11.430    0.000    0.594    0.594
##     HL8        (h)    0.677    0.047   14.543    0.000    0.677    0.677
##     HL9        (i)    0.636    0.047   13.439    0.000    0.636    0.636
##     HL10       (j)    0.666    0.043   15.461    0.000    0.666    0.666
##     HL11       (k)    0.513    0.056    9.145    0.000    0.513    0.513
##     HL12       (l)    0.582    0.056   10.413    0.000    0.582    0.582
##     HL13       (m)    0.642    0.050   12.975    0.000    0.642    0.642
##     HL14       (n)    0.490    0.061    8.082    0.000    0.490    0.490
##     HL15       (o)    0.642    0.046   13.816    0.000    0.642    0.642
##     HL16       (p)    0.646    0.051   12.584    0.000    0.646    0.646
##     HL17       (q)    0.546    0.057    9.511    0.000    0.546    0.546
##     HL18       (r)    0.692    0.044   15.579    0.000    0.692    0.692
##     HL19       (s)    0.596    0.055   10.751    0.000    0.596    0.596
##     HL20       (t)    0.689    0.046   15.043    0.000    0.689    0.689
##     HL21       (u)    0.635    0.050   12.711    0.000    0.635    0.635
##     HL22       (v)    0.518    0.062    8.360    0.000    0.518    0.518
##     HL23       (x)    0.665    0.046   14.590    0.000    0.665    0.665
##     HL24       (y)    0.704    0.047   14.918    0.000    0.704    0.704
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.000                               0.000    0.000
##    .HL2               0.000                               0.000    0.000
##    .HL3               0.000                               0.000    0.000
##    .HL4               0.000                               0.000    0.000
##    .HL5               0.000                               0.000    0.000
##    .HL6               0.000                               0.000    0.000
##    .HL7               0.000                               0.000    0.000
##    .HL8               0.000                               0.000    0.000
##    .HL9               0.000                               0.000    0.000
##    .HL10              0.000                               0.000    0.000
##    .HL11              0.000                               0.000    0.000
##    .HL12              0.000                               0.000    0.000
##    .HL13              0.000                               0.000    0.000
##    .HL14              0.000                               0.000    0.000
##    .HL15              0.000                               0.000    0.000
##    .HL16              0.000                               0.000    0.000
##    .HL17              0.000                               0.000    0.000
##    .HL18              0.000                               0.000    0.000
##    .HL19              0.000                               0.000    0.000
##    .HL20              0.000                               0.000    0.000
##    .HL21              0.000                               0.000    0.000
##    .HL22              0.000                               0.000    0.000
##    .HL23              0.000                               0.000    0.000
##    .HL24              0.000                               0.000    0.000
##     HLQ               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1|t1           -1.176    0.118  -10.000    0.000   -1.176   -1.176
##     HL1|t2            0.776    0.101    7.660    0.000    0.776    0.776
##     HL2|t1           -1.101    0.114   -9.677    0.000   -1.101   -1.101
##     HL2|t2            0.610    0.097    6.285    0.000    0.610    0.610
##     HL3|t1           -0.759    0.101   -7.525    0.000   -0.759   -0.759
##     HL3|t2            0.887    0.105    8.455    0.000    0.887    0.887
##     HL4|t1           -0.849    0.104   -8.194    0.000   -0.849   -0.849
##     HL4|t2            0.610    0.097    6.285    0.000    0.610    0.610
##     HL5|t1           -1.258    0.122  -10.291    0.000   -1.258   -1.258
##     HL5|t2            0.549    0.096    5.724    0.000    0.549    0.549
##     HL6|t1           -1.078    0.113   -9.563    0.000   -1.078   -1.078
##     HL6|t2            0.264    0.092    2.876    0.004    0.264    0.264
##     HL7|t1           -0.579    0.096   -6.005    0.000   -0.579   -0.579
##     HL7|t2            0.967    0.108    8.964    0.000    0.967    0.967
##     HL8|t1           -0.549    0.096   -5.724    0.000   -0.549   -0.549
##     HL8|t2            1.010    0.110    9.209    0.000    1.010    1.010
##     HL9|t1           -0.725    0.100   -7.253    0.000   -0.725   -0.725
##     HL9|t2            0.759    0.101    7.525    0.000    0.759    0.759
##     HL10|t1          -0.812    0.102   -7.929    0.000   -0.812   -0.812
##     HL10|t2           1.010    0.110    9.209    0.000    1.010    1.010
##     HL11|t1          -0.927    0.106   -8.712    0.000   -0.927   -0.927
##     HL11|t2           0.674    0.099    6.841    0.000    0.674    0.674
##     HL12|t1          -0.595    0.097   -6.145    0.000   -0.595   -0.595
##     HL12|t2           1.032    0.111    9.329    0.000    1.032    1.032
##     HL13|t1          -0.794    0.102   -7.795    0.000   -0.794   -0.794
##     HL13|t2           0.907    0.106    8.584    0.000    0.907    0.907
##     HL14|t1          -0.416    0.094   -4.449    0.000   -0.416   -0.416
##     HL14|t2           0.776    0.101    7.660    0.000    0.776    0.776
##     HL15|t1          -1.150    0.116   -9.896    0.000   -1.150   -1.150
##     HL15|t2           0.610    0.097    6.285    0.000    0.610    0.610
##     HL16|t1          -0.579    0.096   -6.005    0.000   -0.579   -0.579
##     HL16|t2           1.176    0.118   10.000    0.000    1.176    1.176
##     HL17|t1          -1.383    0.130  -10.602    0.000   -1.383   -1.383
##     HL17|t2           0.092    0.091    1.008    0.314    0.092    0.092
##     HL18|t1          -1.350    0.128  -10.535    0.000   -1.350   -1.350
##     HL18|t2           0.078    0.091    0.864    0.388    0.078    0.078
##     HL19|t1          -0.642    0.098   -6.564    0.000   -0.642   -0.642
##     HL19|t2           0.927    0.106    8.712    0.000    0.927    0.927
##     HL20|t1          -0.708    0.099   -7.116    0.000   -0.708   -0.708
##     HL20|t2           0.988    0.109    9.087    0.000    0.988    0.988
##     HL21|t1          -0.849    0.104   -8.194    0.000   -0.849   -0.849
##     HL21|t2           0.794    0.102    7.795    0.000    0.794    0.794
##     HL22|t1          -0.907    0.106   -8.584    0.000   -0.907   -0.907
##     HL22|t2           0.610    0.097    6.285    0.000    0.610    0.610
##     HL23|t1          -0.831    0.103   -8.062    0.000   -0.831   -0.831
##     HL23|t2           0.831    0.103    8.062    0.000    0.831    0.831
##     HL24|t1          -0.907    0.106   -8.584    0.000   -0.907   -0.907
##     HL24|t2           0.947    0.107    8.838    0.000    0.947    0.947
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.562                               0.562    0.562
##    .HL2               0.680                               0.680    0.680
##    .HL3               0.660                               0.660    0.660
##    .HL4               0.626                               0.626    0.626
##    .HL5               0.678                               0.678    0.678
##    .HL6               0.819                               0.819    0.819
##    .HL7               0.647                               0.647    0.647
##    .HL8               0.542                               0.542    0.542
##    .HL9               0.595                               0.595    0.595
##    .HL10              0.556                               0.556    0.556
##    .HL11              0.737                               0.737    0.737
##    .HL12              0.661                               0.661    0.661
##    .HL13              0.587                               0.587    0.587
##    .HL14              0.760                               0.760    0.760
##    .HL15              0.588                               0.588    0.588
##    .HL16              0.583                               0.583    0.583
##    .HL17              0.702                               0.702    0.702
##    .HL18              0.521                               0.521    0.521
##    .HL19              0.645                               0.645    0.645
##    .HL20              0.525                               0.525    0.525
##    .HL21              0.596                               0.596    0.596
##    .HL22              0.732                               0.732    0.732
##    .HL23              0.558                               0.558    0.558
##    .HL24              0.504                               0.504    0.504
##     HLQ               1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1               1.000                               1.000    1.000
##     HL2               1.000                               1.000    1.000
##     HL3               1.000                               1.000    1.000
##     HL4               1.000                               1.000    1.000
##     HL5               1.000                               1.000    1.000
##     HL6               1.000                               1.000    1.000
##     HL7               1.000                               1.000    1.000
##     HL8               1.000                               1.000    1.000
##     HL9               1.000                               1.000    1.000
##     HL10              1.000                               1.000    1.000
##     HL11              1.000                               1.000    1.000
##     HL12              1.000                               1.000    1.000
##     HL13              1.000                               1.000    1.000
##     HL14              1.000                               1.000    1.000
##     HL15              1.000                               1.000    1.000
##     HL16              1.000                               1.000    1.000
##     HL17              1.000                               1.000    1.000
##     HL18              1.000                               1.000    1.000
##     HL19              1.000                               1.000    1.000
##     HL20              1.000                               1.000    1.000
##     HL21              1.000                               1.000    1.000
##     HL22              1.000                               1.000    1.000
##     HL23              1.000                               1.000    1.000
##     HL24              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     HL1               0.438
##     HL2               0.320
##     HL3               0.340
##     HL4               0.374
##     HL5               0.322
##     HL6               0.181
##     HL7               0.353
##     HL8               0.458
##     HL9               0.405
##     HL10              0.444
##     HL11              0.263
##     HL12              0.339
##     HL13              0.413
##     HL14              0.240
##     HL15              0.412
##     HL16              0.417
##     HL17              0.298
##     HL18              0.479
##     HL19              0.355
##     HL20              0.475
##     HL21              0.404
##     HL22              0.268
##     HL23              0.442
##     HL24              0.496

Priemerny faktorovy naboj

mean(inspect(fitted.model2,what="std")$lambda)
## [1] 0.6062187

Test modelu, indexy blízkej zhody modelu a dát

Treba si všímať .scaled indexy

fitMeasures(fitted.model2)
##                          npar                          fmin 
##                        72.000                         0.893 
##                         chisq                            df 
##                       342.956                       252.000 
##                        pvalue                  chisq.scaled 
##                         0.000                       153.181 
##                     df.scaled                 pvalue.scaled 
##                        69.000                         0.000 
##          chisq.scaling.factor                baseline.chisq 
##                         2.239                      7324.149 
##                   baseline.df               baseline.pvalue 
##                       276.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled 
##                       746.920                        28.000 
##        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                         0.000                         9.806 
##                           cfi                           tli 
##                         0.987                         0.986 
##                          nnfi                           rfi 
##                         0.986                         0.949 
##                           nfi                          pnfi 
##                         0.953                         0.870 
##                           ifi                           rni 
##                         0.987                         0.987 
##                    cfi.scaled                    tli.scaled 
##                         0.883                         0.952 
##                    cfi.robust                    tli.robust 
##                            NA                            NA 
##                   nnfi.scaled                   nnfi.robust 
##                         0.952                            NA 
##                    rfi.scaled                    nfi.scaled 
##                         0.917                         0.795 
##                    ifi.scaled                    rni.scaled 
##                         0.795                         0.988 
##                    rni.robust                         rmsea 
##                            NA                         0.043 
##                rmsea.ci.lower                rmsea.ci.upper 
##                         0.031                         0.055 
##                  rmsea.pvalue                  rmsea.scaled 
##                         0.825                         0.080 
##         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.069                         0.091 
##           rmsea.pvalue.scaled                  rmsea.robust 
##                         0.000                            NA 
##         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                            NA                            NA 
##           rmsea.pvalue.robust                           rmr 
##                            NA                         0.077 
##                    rmr_nomean                          srmr 
##                         0.080                         0.077 
##                  srmr_bentler           srmr_bentler_nomean 
##                         0.077                         0.080 
##                   srmr_bollen            srmr_bollen_nomean 
##                         0.077                         0.080 
##                    srmr_mplus             srmr_mplus_nomean 
##                         0.077                         0.080 
##                         cn_05                         cn_01 
##                       162.523                       172.057 
##                           gfi                          agfi 
##                         0.967                         0.957 
##                          pgfi                           mfi 
##                         0.752                         0.788

Chi^2 test rozdielov medzi modelmi - p-hodnota

pchisq((fitted.model2@test[[2]]$stat - fitted.model@test[[2]]$stat),
       (fitted.model2@test[[1]]$df - fitted.model@test[[1]]$df),
       lower.tail = FALSE)
## [1] 0.8565412

Diagram

semPaths(fitted.model2, style = "mx", layout = "circle",
         edge.label.cex = 0.5, sizeLat = 5, nCharNodes = 0,
         nDigits = 2, "Standardized",
         intercepts = FALSE, residuals = TRUE, exoVar = FALSE,
         fade = TRUE, groups = "latents", pastel = TRUE)

Test modelu indikuje prítomnosť chybnej špecifikácie modelu. Popri indexoch blízkej zhody je preto potrebné analyzovať lokálne zdroje chybnej špecifikácie na základe matice reziduálnych korelácií

Matica reziduálnych korelácií

residuals.m2 <- residuals(fitted.model2, type = "cor" )$cor
residuals.m2
##      HL1    HL2    HL3    HL4    HL5    HL6    HL7    HL8    HL9    HL10  
## HL1   0.000                                                               
## HL2   0.078  0.000                                                        
## HL3   0.001  0.184  0.000                                                 
## HL4   0.189  0.134  0.083  0.000                                          
## HL5   0.072  0.111  0.110  0.063  0.000                                   
## HL6  -0.052  0.168  0.036  0.140  0.177  0.000                            
## HL7  -0.016  0.018 -0.094  0.022  0.001  0.079  0.000                     
## HL8  -0.063 -0.197 -0.097 -0.108  0.003 -0.028  0.035  0.000              
## HL9  -0.023 -0.214 -0.084 -0.131 -0.014 -0.076 -0.031  0.031  0.000       
## HL10  0.016  0.059 -0.067  0.071  0.048  0.149  0.017 -0.006  0.029  0.000
## HL11  0.049 -0.157 -0.116 -0.033 -0.062 -0.179  0.102  0.051  0.118 -0.072
## HL12 -0.123 -0.043 -0.048  0.001 -0.111  0.009  0.074  0.175 -0.043  0.128
## HL13 -0.025  0.022  0.144 -0.033 -0.030 -0.048 -0.011 -0.004 -0.055 -0.053
## HL14 -0.063 -0.171  0.065 -0.198 -0.059 -0.066 -0.136  0.059  0.172 -0.011
## HL15 -0.027 -0.007  0.013 -0.076 -0.003 -0.023 -0.064 -0.091  0.057 -0.012
## HL16  0.047 -0.133  0.059 -0.043  0.033 -0.164 -0.066  0.101  0.093 -0.060
## HL17  0.093  0.050 -0.039  0.033 -0.193  0.037 -0.026 -0.127 -0.036  0.013
## HL18 -0.031 -0.020 -0.063 -0.077 -0.102  0.020  0.003  0.036  0.039 -0.096
## HL19  0.029 -0.010 -0.121 -0.011 -0.066 -0.205  0.100  0.020 -0.028  0.005
## HL20 -0.031 -0.036 -0.003 -0.038 -0.181 -0.084  0.022  0.041  0.006 -0.003
## HL21 -0.169 -0.035 -0.032 -0.047  0.094 -0.055 -0.016  0.013 -0.072 -0.058
## HL22 -0.073  0.020  0.031 -0.031  0.099 -0.014  0.018 -0.060 -0.037 -0.098
## HL23  0.022  0.007 -0.018 -0.045 -0.051 -0.011 -0.051 -0.105  0.099 -0.061
## HL24  0.000 -0.011 -0.031 -0.035  0.002 -0.108 -0.032 -0.047 -0.022 -0.001
##      HL11   HL12   HL13   HL14   HL15   HL16   HL17   HL18   HL19   HL20  
## HL1                                                                       
## HL2                                                                       
## HL3                                                                       
## HL4                                                                       
## HL5                                                                       
## HL6                                                                       
## HL7                                                                       
## HL8                                                                       
## HL9                                                                       
## HL10                                                                      
## HL11  0.000                                                               
## HL12  0.109  0.000                                                        
## HL13  0.047  0.129  0.000                                                 
## HL14 -0.008 -0.017  0.020  0.000                                          
## HL15 -0.080 -0.178 -0.037  0.159  0.000                                   
## HL16 -0.008  0.028  0.037 -0.033  0.066  0.000                            
## HL17 -0.086 -0.151 -0.141  0.046  0.126  0.037  0.000                     
## HL18  0.081 -0.171 -0.156 -0.041  0.095 -0.038  0.192  0.000              
## HL19 -0.024  0.012 -0.055  0.061 -0.045 -0.015 -0.144 -0.098  0.000       
## HL20 -0.091  0.023  0.011  0.009  0.076  0.047 -0.136 -0.054  0.058  0.000
## HL21 -0.014  0.035  0.111 -0.055  0.086 -0.012 -0.114 -0.046  0.088  0.066
## HL22  0.049 -0.051  0.084 -0.094 -0.079 -0.206  0.014  0.064  0.042  0.059
## HL23  0.098 -0.065  0.011  0.049 -0.088 -0.076  0.089  0.051 -0.005 -0.064
## HL24 -0.067 -0.188 -0.118  0.017 -0.042  0.029  0.029  0.093  0.164  0.042
##      HL21   HL22   HL23   HL24  
## HL1                             
## HL2                             
## HL3                             
## HL4                             
## HL5                             
## HL6                             
## HL7                             
## HL8                             
## HL9                             
## HL10                            
## HL11                            
## HL12                            
## HL13                            
## HL14                            
## HL15                            
## HL16                            
## HL17                            
## HL18                            
## HL19                            
## HL20                            
## HL21  0.000                     
## HL22  0.080  0.000              
## HL23 -0.133  0.130  0.000       
## HL24  0.035 -0.043  0.103  0.000

Pre prehladnejšiu vizualizáciu, matica reziduí s vyznačenými reziduálnymi hodnotami > .1 (štandardizované z-reziduá je možné odhadnúť iba v prípade použitia estimátora z rodiny maximum likelihood. Arbitrárna hodnota .1 preto, lebo neumožní produkt dvoch nábojov > .3)

Počet premenných

p = 24

Ak máme v matici (p(p+1)/2 - p) = 300 elementov, tak

(p*(p+1)/2 - p)*.05
## [1] 13.8

z nich môže byť signifikantných na hladine alfa = .05

HRUBÁ APROXIMÁCIA - približne toľko elementov môže byť > .1 Diag = diagonála, >.1 = reziduálna hodnota vyššia ako .1

ifelse(residuals.m2 == 0, "Diag", ifelse(residuals.m2 > .1, ">.1", "."))
##      HL1    HL2    HL3    HL4    HL5    HL6    HL7    HL8    HL9    HL10  
## HL1  "Diag" "."    "."    ">.1"  "."    "."    "."    "."    "."    "."   
## HL2  "."    "Diag" ">.1"  ">.1"  ">.1"  ">.1"  "."    "."    "."    "."   
## HL3  "."    ">.1"  "Diag" "."    ">.1"  "."    "."    "."    "."    "."   
## HL4  ">.1"  ">.1"  "."    "Diag" "."    ">.1"  "."    "."    "."    "."   
## HL5  "."    ">.1"  ">.1"  "."    "Diag" ">.1"  "."    "."    "."    "."   
## HL6  "."    ">.1"  "."    ">.1"  ">.1"  "Diag" "."    "."    "."    ">.1" 
## HL7  "."    "."    "."    "."    "."    "."    "Diag" "."    "."    "."   
## HL8  "."    "."    "."    "."    "."    "."    "."    "Diag" "."    "."   
## HL9  "."    "."    "."    "."    "."    "."    "."    "."    "Diag" "."   
## HL10 "."    "."    "."    "."    "."    ">.1"  "."    "."    "."    "Diag"
## HL11 "."    "."    "."    "."    "."    "."    ">.1"  "."    ">.1"  "."   
## HL12 "."    "."    "."    "."    "."    "."    "."    ">.1"  "."    ">.1" 
## HL13 "."    "."    ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
## HL15 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL16 "."    "."    "."    "."    "."    "."    "."    ">.1"  "."    "."   
## HL17 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL18 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL19 "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL21 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL22 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL23 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL24 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
##      HL11   HL12   HL13   HL14   HL15   HL16   HL17   HL18   HL19   HL20  
## HL1  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL2  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL3  "."    "."    ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL4  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL5  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL6  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL7  ">.1"  "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
## HL8  "."    ">.1"  "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL9  ">.1"  "."    "."    ">.1"  "."    "."    "."    "."    "."    "."   
## HL10 "."    ">.1"  "."    "."    "."    "."    "."    "."    "."    "."   
## HL11 "Diag" ">.1"  "."    "."    "."    "."    "."    "."    "."    "."   
## HL12 ">.1"  "Diag" ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL13 "."    ">.1"  "Diag" "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "Diag" ">.1"  "."    "."    "."    "."    "."   
## HL15 "."    "."    "."    ">.1"  "Diag" "."    ">.1"  "."    "."    "."   
## HL16 "."    "."    "."    "."    "."    "Diag" "."    "."    "."    "."   
## HL17 "."    "."    "."    "."    ">.1"  "."    "Diag" ">.1"  "."    "."   
## HL18 "."    "."    "."    "."    "."    "."    ">.1"  "Diag" "."    "."   
## HL19 "."    "."    "."    "."    "."    "."    "."    "."    "Diag" "."   
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "Diag"
## HL21 "."    "."    ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL22 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL23 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL24 "."    "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
##      HL21   HL22   HL23   HL24  
## HL1  "."    "."    "."    "."   
## HL2  "."    "."    "."    "."   
## HL3  "."    "."    "."    "."   
## HL4  "."    "."    "."    "."   
## HL5  "."    "."    "."    "."   
## HL6  "."    "."    "."    "."   
## HL7  "."    "."    "."    "."   
## HL8  "."    "."    "."    "."   
## HL9  "."    "."    "."    "."   
## HL10 "."    "."    "."    "."   
## HL11 "."    "."    "."    "."   
## HL12 "."    "."    "."    "."   
## HL13 ">.1"  "."    "."    "."   
## HL14 "."    "."    "."    "."   
## HL15 "."    "."    "."    "."   
## HL16 "."    "."    "."    "."   
## HL17 "."    "."    "."    "."   
## HL18 "."    "."    "."    "."   
## HL19 "."    "."    "."    ">.1" 
## HL20 "."    "."    "."    "."   
## HL21 "Diag" "."    "."    "."   
## HL22 "."    "Diag" ">.1"  "."   
## HL23 "."    ">.1"  "Diag" ">.1" 
## HL24 "."    "."    ">.1"  "Diag"

Odhad reliability

Odhad internej konzistencie - Cronbachova alfa

alpha(rel.HLQ.na.rm[,1:24])$total$std.alpha # pre jednofaktorovu (24 polozkovu) skalu
## [1] 0.9290116

Odhad stability v čase

Výpočet sumárneho skóre HLQ

rel.HLQ.na.rm$HLQ_sum <- rowMeans(rel.HLQ.na.rm[,c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9",
                                                   "HL10", "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17",
                                                   "HL18", "HL19", "HL20", "HL21", "HL22", "HL23", "HL24")], na.rm = TRUE)

Výpočet sumárného skóre retestu RHLQ

#rel.HLQ.na.rm$RHLQ_sum <- rowMeans(rel.HLQ.na.rm[,c("RHL1", "RHL2", "RHL3", "RHL4", "RHL5", "RHL6", "RHL7", "RHL8", "RHL9",
#                                                    "RHL10", "RHL11", "RHL12", "RHL13", "RHL14", "RHL15", "RHL16", "RHL17",
#                                                    "RHL18", "RHL19", "RHL20", "RHL21", "RHL22", "RHL23", "RHL24")], na.rm = TRUE)

Test-retest korelácia

#with(rel.HLQ.na.rm, cor.test(HLQ_sum, RHLQ_sum))$estimate # pre jednofaktorovu (24 polozkovu) skalu