Super Bowl LI will be the 51st Super Bowl and the 47th modern-era National Football League (NFL) championship game. The American Football Conference (AFC) champion New England Patriots will play the National Football Conference (NFC) champion Atlanta Falcons to decide the league champion for the 2016 season.
We want to estimate chances of two leaders to win final game: New England Patriots (NEP) and Atlanta Falcons (AF). Though we have already known the outcome of this final: NEP - 34, AF - 28.
For more about Super Bowl LI see: https://en.wikipedia.org/wiki/Super_Bowl_LI.
So we have got some information about two leaders of the final game: W - number of won points, L - number of lost points, WL - total number of points (W-L), WL2 - games won (1) and games lost (0).
#2016 Atlanta Falcons season
AFW<-c(23,24,17,35,45,48,23,33,43,38,42,41,33,38)
AFL<-c(6,24,30,15,28)
AFWL<-c(5,11,-11,2,-7,7,13,15,7,-2,-3,1,15,-9,19,-1,28,28,17,6)
AFWL2<-c(1,1,0,1,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1)
#2016 New England Patriots season
NEPW<-c(34,23,19,23,31,27,33,35,27,41,30,22,26,30,16,41,35,34,36)
NEPL<-c(17,16,31)
NEPWL<-c(11,1,2,-8,2,7,-16,20,18,11,16,-7,13,5,16,7,13,38,21,18,21)
NEPWL2<-c(1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1)
#AF
summary(AFW)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 17.00 26.25 36.50 34.50 41.75 48.00
summary(AFL)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.0 15.0 24.0 20.6 28.0 30.0
summary(AFWL)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -11.00 -1.25 6.50 7.05 15.00 28.00
P_AF_W<-sum(AFWL2)/length(AFWL2) #Probability of win for AF
P_AF_W
## [1] 0.7
#NEP
summary(NEPW)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 24.50 30.00 29.63 34.50 41.00
summary(NEPL)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 16.50 17.00 21.33 24.00 31.00
summary(NEPWL)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -16.000 2.000 11.000 9.952 18.000 38.000
P_NEP_W<-sum(NEPWL2)/length(NEPWL2) #Probability of win for NEP
P_NEP_W
## [1] 0.8571429
mean(AFWL>=6)
## [1] 0.55
mean(NEPWL>=6)
## [1] 0.6666667
SBWL<-cbind(AFWL,NEPWL)
## Warning in cbind(AFWL, NEPWL): number of rows of result is not a multiple
## of vector length (arg 1)
boxplot(SBWL,col=c("red","blue"),main="Total points won by teams")
hist(AFWL,main="Total points won by AF", col="red",breaks = 5)
hist(NEPWL,main="Total points won by NEP", col="blue")
t.test(AFWL,NEPWL)
##
## Welch Two Sample t-test
##
## data: AFWL and NEPWL
## t = -0.79974, df = 38.987, p-value = 0.4287
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -10.243164 4.438402
## sample estimates:
## mean of x mean of y
## 7.050000 9.952381
#AF
binom.test(x=sum(AFWL2),n = length(AFWL2), p = 0.9)
##
## Exact binomial test
##
## data: sum(AFWL2) and length(AFWL2)
## number of successes = 14, number of trials = 20, p-value = 0.01125
## alternative hypothesis: true probability of success is not equal to 0.9
## 95 percent confidence interval:
## 0.4572108 0.8810684
## sample estimates:
## probability of success
## 0.7
#NEP
binom.test(x=sum(NEPWL2),n = length(NEPWL2), p = 0.9)
##
## Exact binomial test
##
## data: sum(NEPWL2) and length(NEPWL2)
## number of successes = 18, number of trials = 21, p-value = 0.461
## alternative hypothesis: true probability of success is not equal to 0.9
## 95 percent confidence interval:
## 0.636576 0.969511
## sample estimates:
## probability of success
## 0.8571429
We try Bayesian math for our data converting confidence into credibility.
library(rjags)
## Loading required package: coda
## Linked to JAGS 4.1.0
## Loaded modules: basemod,bugs
library(stringr)
source("lib/generic_functions.R")
source("lib/utility_functions.R")
source("lib/BayesianFirstAid-package.R")
source("lib/bayes_binom_test.R")
source("lib/bayes_cor_test.R")
source("lib/bayes_poisson_test.R")
source("lib/bayes_prop_test.R")
source("lib/bayes_t_test.R")
bst<-bayes.t.test(AFWL,NEPWL)
summary(bst)
## Data
## AFWL, n = 20
## NEPWL, n = 21
##
## Model parameters and generated quantities
## mu_x: the mean of AFWL
## sigma_x: the scale of AFWL , a consistent
## estimate of SD when nu is large.
## mu_y: the mean of NEPWL
## sigma_y: the scale of NEPWL
## mu_diff: the difference in means (mu_x - mu_y)
## sigma_diff: the difference in scale (sigma_x - sigma_y)
## nu: the degrees-of-freedom for the t distribution
## fitted to AFWL and NEPWL
## eff_size: the effect size calculated as
## (mu_x - mu_y) / sqrt((sigma_x^2 + sigma_y^2) / 2)
## x_pred: predicted distribution for a new datapoint
## generated as AFWL
## y_pred: predicted distribution for a new datapoint
## generated as NEPWL
##
## Measures
## mean sd HDIlo HDIup %<comp %>comp
## mu_x 6.909 2.762 1.487 12.325 0.007 0.993
## sigma_x 11.659 2.237 7.860 16.289 0.000 1.000
## mu_y 10.024 2.763 4.653 15.522 0.000 1.000
## sigma_y 12.147 2.327 7.956 16.820 0.000 1.000
## mu_diff -3.116 3.908 -10.645 4.670 0.791 0.209
## sigma_diff -0.488 3.171 -6.671 5.988 0.570 0.430
## nu 34.403 28.643 1.882 90.948 0.000 1.000
## eff_size -0.266 0.328 -0.902 0.379 0.791 0.209
## x_pred 6.893 13.085 -19.664 32.438 0.283 0.717
## y_pred 10.009 13.514 -17.566 36.379 0.213 0.787
##
## 'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.
## '%<comp' and '%>comp' are the probabilities of the respective parameter being
## smaller or larger than 0.
##
## Quantiles
## q2.5% q25% median q75% q97.5%
## mu_x 1.524 5.085 6.892 8.702 12.385
## sigma_x 8.152 10.101 11.364 12.884 16.859
## mu_y 4.524 8.222 10.047 11.830 15.427
## sigma_y 8.356 10.525 11.890 13.472 17.471
## mu_diff -10.743 -5.715 -3.116 -0.541 4.594
## sigma_diff -6.753 -2.471 -0.499 1.477 5.915
## nu 4.504 13.818 26.145 46.130 110.679
## eff_size -0.916 -0.486 -0.264 -0.046 0.369
## x_pred -19.367 -1.250 6.995 15.044 32.858
## y_pred -17.079 1.555 10.089 18.441 37.039
plot(bst)
fit.bs.AFWL <- bayes.binom.test(x=sum(AFWL2),n = length(AFWL2), cred.mass=0.95, p = 0.9, n.iter = 5000)
summary(fit.bs.AFWL)
## Data
## number of successes = 14, number of trials = 20
##
## Model parameters and generated quantities
## theta: the relative frequency of success
## x_pred: predicted number of successes in a replication
##
## Measures
## mean sd HDIlo HDIup %<comp %>comp
## theta 0.680 0.098 0.485 0.858 0.999 0.001
## x_pred 13.612 2.874 7.000 18.000 0.000 1.000
##
## 'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.
## '%<comp' and '%>comp' are the probabilities of the respective parameter being
## smaller or larger than 0.9.
##
## Quantiles
## q2.5% q25% median q75% q97.5%
## theta 0.471 0.614 0.688 0.753 0.851
## x_pred 7.000 12.000 14.000 16.000 19.000
plot(fit.bs.AFWL)
fit.bs.NEPWL <- bayes.binom.test(x=sum(NEPWL2),n = length(NEPWL2), cred.mass=0.95, p = 0.9, n.iter = 5000)
summary(fit.bs.NEPWL)
## Data
## number of successes = 18, number of trials = 21
##
## Model parameters and generated quantities
## theta: the relative frequency of success
## x_pred: predicted number of successes in a replication
##
## Measures
## mean sd HDIlo HDIup %<comp %>comp
## theta 0.825 0.078 0.67 0.959 0.835 0.165
## x_pred 17.341 2.312 13.00 21.000 0.000 1.000
##
## 'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.
## '%<comp' and '%>comp' are the probabilities of the respective parameter being
## smaller or larger than 0.9.
##
## Quantiles
## q2.5% q25% median q75% q97.5%
## theta 0.651 0.776 0.835 0.882 0.949
## x_pred 12.000 16.000 18.000 19.000 21.000
plot(fit.bs.NEPWL)
library(bayesboot)
##
## Attaching package: 'bayesboot'
## The following object is masked _by_ '.GlobalEnv':
##
## plotPost
BS_AFWL <- bayesboot(AFWL, weighted.mean, use.weights = TRUE)
mean(BS_AFWL[,1]>6)
## [1] 0.67
BS_NEPWL <- bayesboot(NEPWL, weighted.mean, use.weights = TRUE)
mean(BS_NEPWL[,1]>6)
## [1] 0.94775