Laboratorio en R
Usaremos el dataset demanda de bicicletas. Para determinar demostrar la utilizacion en campo de la teoria aprendidad en clase. El dataset lo puede encontrar en el GES.
bici<- read.csv("hour.csv",
na.strings = FALSE,
strip.white = TRUE)
colnames(bici)
[1] "instant" "dteday" "season" "yr" "mnth" "hr" "holiday" "weekday" "workingday"
[10] "weathersit" "temp" "atemp" "hum" "windspeed" "casual" "registered" "cnt"
datetime - hourly date + timestamp
season - 1 = spring, 2 = summer, 3 = fall, 4 = winter
holiday - whether the day is considered a holiday
workingday - whether the day is neither a weekend nor holiday
weather - 1: Clear, Few clouds, Partly cloudy, Partly cloudy 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
temp - temperature in Celsius
atemp - “feels like” temperature in Celsius
humidity - relative humidity
windspeed - wind speed
casual - number of non-registered user rentals initiated
registered - number of registered user rentals initiated
count - number of total rentals
library(dplyr)
library(ggplot2)
season<-4
bici_data<-
bici %>%
dplyr::select(season, atemp, hum, cnt) %>%
filter(season == 4)
hist(bici_data$atemp)

hist(bici_data$hum)

bici_data %>%
ggplot(aes(x=atemp))+
geom_histogram(bins=30, aes(y = ..density..) )+
geom_rug()+
geom_density()

bici_data %>%
ggplot(aes(hum))+
geom_histogram(bins=30, aes(y = ..density..) )+
geom_rug()+
geom_density()

bici %>%
dplyr::select(season, atemp, hum, cnt) %>%
filter(season == 4) %>%
ggplot( aes(atemp, hum) ) +
geom_raster(aes(fill=cnt), interpolate = FALSE)+
geom_point(size=0.1)+
geom_density_2d()+
geom_rug()

NA
library(MASS)
bici_density <- kde2d(bici_data$atemp,bici_data$hum, n=100)
bici_density$z <- bici_density$z/sum( bici_density$z)
sum(bici_density$z)
[1] 1
cols1 <- colorRampPalette(c("red", "white", "blue"),
space = "Lab")(256)
cols2 <- colorRampPalette(c("#FFFFD4", "#FED98E", "#FE9929", "#D95F0E", "#993404"),space="Lab")(256)
cols3<-colorRampPalette(c("black","blue","green","orange","red"))(1000)
image(bici_density$z,
col = cols3,
zlim=c(min(bici_density$z), max(bici_density$z)))

str(bici_density)
List of 3
$ x: num [1:100] 0.151 0.157 0.162 0.168 0.173 ...
$ y: num [1:100] 0.16 0.168 0.177 0.185 0.194 ...
$ z: num [1:100, 1:100] 3.38e-15 7.71e-15 1.66e-14 3.36e-14 6.44e-14 ...
filterX<-bici_density$x>=0.5
LS0tCnRpdGxlOiAiRGlzdHJpYnVjaW9uZXMgZGUgcHJvYmFiaWxpZGFkIGJpdmFyaWFkYXMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCgojIyBEZWZpbmljacOzbiBQREYKVW5hIGRpc3RyaWJ1Y2nDs24gYml2YXJpYWRhIGVzIGRlIGxhIGZvcm1hICQkcCh5XzEseV8yKT1QKFlfMT15XzEsWV8yPXlfMikkJApsYSBjdWFsIHBvZGVtb3MgdmVyIHRpZW5lIGRvcyAqdmFyaWFibGVzIGFsZWF0b3JpYXMqLgoKIyMgUHJvcGllZGFkZXMKMS4gJHAoeV8xLnlfMilcZ2VxIDAkCjIuICRcc3VtX3t5XzF9XHN1bV97eV8yfXAoeV8xLHlfMik9MSwgXGZvcmFsbCAoeV8xLHlfMikkCgojIyBEZWZpbmljacOzbiBDREYKTGEgZnVuY2lvbiBkZSBkaXN0cmlidWNpw7NuIGFjdW11bGFkYSBzZSBkZWZpbmUgY29tbywKJCRGKHlfMSx5XzIpPVAoWV8xIFxsZXEgeV8xLCBZXzIgXGxlcSB5XzIpJCQKCiMjIyBDYXNvIERpc2NyZXRvCgokJFxzdW1fe3RfMSBcaW4gKC1caW5mdHkseV8xXX1cc3VtX3t0XzIgXGluICgtXGluZnR5LHlfMl19Zih0XzEsdF8yKSQkCgojIyMgQ2FzbyBjb250aW51bwokJFxpbnRfey1caW5mdHl9Xnt5XzF9XGludF97LVxpbmZ0eX1ee3lfMn1mKHRfMSx0XzIpZHRfMmR0XzEkJAoKIyMgUHJvcGllZGFkZXMKMS4gJEYoLVxpbmZ0eSwtXGluZnR5KT1GKC1caW5mdHkseV8yKT1GKHlfMSwtXGluZnR5KT0wJAoyLiAkRihcaW5mdHksIFxpbmZ0eSk9MSQKCiMjIEVqZW1wbG8gY2xhc2UKTGEgYWRtaW5pc3RyYWNpw7NuIGVuIHVuIHJlc3RhdXJhbnRlIGRlIGNvbWlkYSByw6FwaWRhIGVzdMOhIGludGVyZXNhZGEgZW4gZWwgY29tcG9ydGFtaWVudG8gY29uanVudG8gZGUgbGFzIHZhcmlhYmxlcyBhbGVhdG9yaWFzICRZXzEkLCBkZWZpbmlkYXMgY29tbyBlbCB0aWVtcG8gdG90YWwgZW50cmUgbGEgbGxlZ2FkYSBkZSB1biBjbGllbnRlIGEgbGEgdGllbmRhIHkgbGEgc2FsaWRhIGRlIGxhIHZlbnRhbmlsbGEgZGUgc2VydmljaW8geSAkWV8yJCwgZWwgdGllbXBvIHF1ZSB1biBjbGllbnRlIGVzcGVyYSBlbiBsYSBmaWxhIGFudGVzIGRlIGxsZWdhciBhIGxhIHZlbnRhbmlsbGEgZGUgc2VydmljaW8uIENvbW8gJFlfMSQgaW5jbHV5ZSBlbCB0aWVtcG8gcXVlIHVuIGNsaWVudGUgZXNwZXJhIGVuIGxhIGZpbGEsIGRlYmVtb3MgdGVuZXIgJFlfMSBcZ2VxIFlfMiQuIExhIGRpc3RyaWJ1Y2nDs24gZGUgZnJlY3VlbmNpYSByZWxhdGl2YSBkZSB2YWxvcmVzIG9ic2VydmFkb3MgZGUgJFlfMSQgeSAkWV8yJCBwdWVkZSBzZXIgbW9kZWxhZGEgcG9yIGxhIGZ1bmNpw7NuIGRlIGRlbnNpZGFkIGRlIHByb2JhYmlsaWRhZAokJGYoeV8xLHlfMik9XGJlZ2lue2Nhc2VzfQplXnsteV8xfSAmIFx0ZXh0eyAsIH0gMCBcbGVxIHlfMiBcbGVxIHlfMSA8IFxpbmZ0eSBcXCAKMCAmIFx0ZXh0eyAsICBlbiBjdWFscXVpZXIgb3RybyBwdW50b30gICAKXGVuZHtjYXNlc30kJAoKCgpDb24gZWwgdGllbXBvIG1lZGlkbyBlbiBtaW51dG9zLiBFbmN1ZW50cmUKCmEuICRQKFlfMTwyLCBZXzI+MSkkCmIuICRQKFlfMSBcZ2VxIDJZXzIpJApjLiAkUChZXzEtWV8yIFxnZXEgMSkkIChPYnNlcnZlc2UgcXVlICRZXzEtWV8yJCBkZW5vdGEgZWwgdGllbXBvIHF1ZSBzZSBwYXNhIGVuIGxhIHZlbnRhbmlsbGEgZGUgc2VydmljaW8pCgoKIyBMYWJvcmF0b3JpbyBlbiBSCgpVc2FyZW1vcyBlbCBkYXRhc2V0IGRlbWFuZGEgZGUgYmljaWNsZXRhcy4gUGFyYSBkZXRlcm1pbmFyIGRlbW9zdHJhciBsYSB1dGlsaXphY2lvbiBlbiBjYW1wbyBkZSBsYSB0ZW9yaWEgYXByZW5kaWRhZCBlbiBjbGFzZS4gRWwgZGF0YXNldCBsbyBwdWVkZSBlbmNvbnRyYXIgZW4gZWwgR0VTLgoKYGBge3J9CmJpY2k8LSByZWFkLmNzdigiaG91ci5jc3YiLAogICAgICAgICAgICAgICAgbmEuc3RyaW5ncyA9IEZBTFNFLAogICAgICAgICAgICAgICAgc3RyaXAud2hpdGUgPSBUUlVFKQpgYGAKCmBgYHtyfQpjb2xuYW1lcyhiaWNpKQpgYGAKCioqZGF0ZXRpbWUqKiAtIGhvdXJseSBkYXRlICsgdGltZXN0YW1wIAoKKipzZWFzb24qKiAtICAxID0gc3ByaW5nLCAyID0gc3VtbWVyLCAzID0gZmFsbCwgNCA9IHdpbnRlciAKCioqaG9saWRheSoqIC0gd2hldGhlciB0aGUgZGF5IGlzIGNvbnNpZGVyZWQgYSBob2xpZGF5CgoqKndvcmtpbmdkYXkqKiAtIHdoZXRoZXIgdGhlIGRheSBpcyBuZWl0aGVyIGEgd2Vla2VuZCBub3IgaG9saWRheQoKKip3ZWF0aGVyKiogLSAqMToqIENsZWFyLCBGZXcgY2xvdWRzLCBQYXJ0bHkgY2xvdWR5LCBQYXJ0bHkgY2xvdWR5CioyOiogTWlzdCArIENsb3VkeSwgTWlzdCArIEJyb2tlbiBjbG91ZHMsIE1pc3QgKyBGZXcgY2xvdWRzLCBNaXN0IAoqMzoqIExpZ2h0IFNub3csIExpZ2h0IFJhaW4gKyBUaHVuZGVyc3Rvcm0gKyBTY2F0dGVyZWQgY2xvdWRzLCBMaWdodCBSYWluICsgU2NhdHRlcmVkIGNsb3VkcyAKKjQ6KiBIZWF2eSBSYWluICsgSWNlIFBhbGxldHMgKyBUaHVuZGVyc3Rvcm0gKyBNaXN0LCBTbm93ICsgRm9nIAogICAgICAgICAgICAKKip0ZW1wKiogLSB0ZW1wZXJhdHVyZSBpbiBDZWxzaXVzCgoqKmF0ZW1wKiogLSAiZmVlbHMgbGlrZSIgdGVtcGVyYXR1cmUgaW4gQ2Vsc2l1cwoKKipodW1pZGl0eSoqIC0gcmVsYXRpdmUgaHVtaWRpdHkKCioqd2luZHNwZWVkKiogLSB3aW5kIHNwZWVkCgoqKmNhc3VhbCoqIC0gbnVtYmVyIG9mIG5vbi1yZWdpc3RlcmVkIHVzZXIgcmVudGFscyBpbml0aWF0ZWQKCioqcmVnaXN0ZXJlZCoqIC0gbnVtYmVyIG9mIHJlZ2lzdGVyZWQgdXNlciByZW50YWxzIGluaXRpYXRlZAoKKipjb3VudCoqIC0gbnVtYmVyIG9mIHRvdGFsIHJlbnRhbHMKCmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncGxvdDIpCmBgYAoKCgoKCgoKYGBge3J9CnNlYXNvbjwtNApiaWNpX2RhdGE8LQpiaWNpICU+JSAgCiAgZHBseXI6OnNlbGVjdChzZWFzb24sIGF0ZW1wLCBodW0sIGNudCkgJT4lIAogIGZpbHRlcihzZWFzb24gPT0gNCkgIApgYGAKCgoKYGBge3J9Cmhpc3QoYmljaV9kYXRhJGF0ZW1wKQpgYGAKCmBgYHtyfQpoaXN0KGJpY2lfZGF0YSRodW0pCmBgYAoKCgpgYGB7cn0KYmljaV9kYXRhICU+JSAKICBnZ3Bsb3QoYWVzKHg9YXRlbXApKSsKICBnZW9tX2hpc3RvZ3JhbShiaW5zPTMwLCBhZXMoeSA9IC4uZGVuc2l0eS4uKSApKwogIGdlb21fcnVnKCkrCiAgZ2VvbV9kZW5zaXR5KCkKYGBgCgoKYGBge3J9CmJpY2lfZGF0YSAlPiUgCiAgZ2dwbG90KGFlcyhodW0pKSsKICBnZW9tX2hpc3RvZ3JhbShiaW5zPTMwLCBhZXMoeSA9IC4uZGVuc2l0eS4uKSApKwogIGdlb21fcnVnKCkrCiAgZ2VvbV9kZW5zaXR5KCkKYGBgCgoKYGBge3J9CmJpY2kgJT4lICAKICBkcGx5cjo6c2VsZWN0KHNlYXNvbiwgYXRlbXAsIGh1bSwgY250KSAlPiUgCiAgZmlsdGVyKHNlYXNvbiA9PSA0KSAlPiUKICBnZ3Bsb3QoIGFlcyhhdGVtcCwgaHVtKSApICsKICBnZW9tX3Jhc3RlcihhZXMoZmlsbD1jbnQpLCBpbnRlcnBvbGF0ZSA9IEZBTFNFKSsKICBnZW9tX3BvaW50KHNpemU9MC4xKSsKICBnZW9tX2RlbnNpdHlfMmQoKSsKICBnZW9tX3J1ZygpCiAgCmBgYAoKCgoKCgoKYGBge3J9CmxpYnJhcnkoTUFTUykKYmljaV9kZW5zaXR5IDwtIGtkZTJkKGJpY2lfZGF0YSRhdGVtcCxiaWNpX2RhdGEkaHVtLCBuPTEwMCkKYmljaV9kZW5zaXR5JHogPC0gYmljaV9kZW5zaXR5JHovc3VtKCBiaWNpX2RlbnNpdHkkeikgCnN1bShiaWNpX2RlbnNpdHkkeikKCgpgYGAKCgoKCmBgYHtyfQpjb2xzMSA8LSBjb2xvclJhbXBQYWxldHRlKGMoInJlZCIsICJ3aGl0ZSIsICJibHVlIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNwYWNlID0gIkxhYiIpKDI1NikKCmNvbHMyIDwtIGNvbG9yUmFtcFBhbGV0dGUoYygiI0ZGRkZENCIsICIjRkVEOThFIiwgIiNGRTk5MjkiLCAiI0Q5NUYwRSIsICIjOTkzNDA0Iiksc3BhY2U9IkxhYiIpKDI1NikKCmNvbHMzPC1jb2xvclJhbXBQYWxldHRlKGMoImJsYWNrIiwiYmx1ZSIsImdyZWVuIiwib3JhbmdlIiwicmVkIikpKDEwMDApCgoKaW1hZ2UoYmljaV9kZW5zaXR5JHosICAKICAgICAgY29sID0gY29sczMsIAogICAgICB6bGltPWMobWluKGJpY2lfZGVuc2l0eSR6KSwgbWF4KGJpY2lfZGVuc2l0eSR6KSkpCmBgYAoKCmBgYHtyfQpzdHIoYmljaV9kZW5zaXR5KQpgYGAKCgpgYGB7cn0KZmlsdGVyWDwtYmljaV9kZW5zaXR5JHg+PTAuNQoKYGBgCgo=