Definición PDF

Una distribución bivariada es de la forma \[p(y_1,y_2)=P(Y_1=y_1,Y_2=y_2)\] la cual podemos ver tiene dos variables aleatorias.

Propiedades

  1. \(p(y_1.y_2)\geq 0\)
  2. \(\sum_{y_1}\sum_{y_2}p(y_1,y_2)=1, \forall (y_1,y_2)\)

Definición CDF

La funcion de distribución acumulada se define como, \[F(y_1,y_2)=P(Y_1 \leq y_1, Y_2 \leq y_2)\]

Caso Discreto

\[\sum_{t_1 \in (-\infty,y_1]}\sum_{t_2 \in (-\infty,y_2]}f(t_1,t_2)\]

Caso continuo

\[\int_{-\infty}^{y_1}\int_{-\infty}^{y_2}f(t_1,t_2)dt_2dt_1\]

Propiedades

  1. \(F(-\infty,-\infty)=F(-\infty,y_2)=F(y_1,-\infty)=0\)
  2. \(F(\infty, \infty)=1\)

Ejemplo clase

La administración en un restaurante de comida rápida está interesada en el comportamiento conjunto de las variables aleatorias \(Y_1\), definidas como el tiempo total entre la llegada de un cliente a la tienda y la salida de la ventanilla de servicio y \(Y_2\), el tiempo que un cliente espera en la fila antes de llegar a la ventanilla de servicio. Como \(Y_1\) incluye el tiempo que un cliente espera en la fila, debemos tener \(Y_1 \geq Y_2\). La distribución de frecuencia relativa de valores observados de \(Y_1\) y \(Y_2\) puede ser modelada por la función de densidad de probabilidad \[f(y_1,y_2)=\begin{cases} e^{-y_1} & \text{ , } 0 \leq y_2 \leq y_1 < \infty \\ 0 & \text{ , en cualquier otro punto} \end{cases}\]

Con el tiempo medido en minutos. Encuentre

  1. \(P(Y_1<2, Y_2>1)\)
  2. \(P(Y_1 \geq 2Y_2)\)
  3. \(P(Y_1-Y_2 \geq 1)\) (Observese que \(Y_1-Y_2\) denota el tiempo que se pasa en la ventanilla de servicio)

Laboratorio en R

Usaremos el dataset demanda de bicicletas. Para determinar demostrar la utilizacion en campo de la teoria aprendidad en clase. El dataset lo puede encontrar en el GES.

bici<- read.csv("hour.csv",
                na.strings = FALSE,
                strip.white = TRUE)
colnames(bici)
 [1] "instant"    "dteday"     "season"     "yr"         "mnth"       "hr"         "holiday"    "weekday"    "workingday"
[10] "weathersit" "temp"       "atemp"      "hum"        "windspeed"  "casual"     "registered" "cnt"       

datetime - hourly date + timestamp

season - 1 = spring, 2 = summer, 3 = fall, 4 = winter

holiday - whether the day is considered a holiday

workingday - whether the day is neither a weekend nor holiday

weather - 1: Clear, Few clouds, Partly cloudy, Partly cloudy 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp - temperature in Celsius

atemp - “feels like” temperature in Celsius

humidity - relative humidity

windspeed - wind speed

casual - number of non-registered user rentals initiated

registered - number of registered user rentals initiated

count - number of total rentals

library(dplyr)
library(ggplot2)
season<-4
bici_data<-
bici %>%  
  dplyr::select(season, atemp, hum, cnt) %>% 
  filter(season == 4)  
hist(bici_data$atemp)

hist(bici_data$hum)

bici_data %>% 
  ggplot(aes(x=atemp))+
  geom_histogram(bins=30, aes(y = ..density..) )+
  geom_rug()+
  geom_density()

bici_data %>% 
  ggplot(aes(hum))+
  geom_histogram(bins=30, aes(y = ..density..) )+
  geom_rug()+
  geom_density()

bici %>%  
  dplyr::select(season, atemp, hum, cnt) %>% 
  filter(season == 4) %>%
  ggplot( aes(atemp, hum) ) +
  geom_raster(aes(fill=cnt), interpolate = FALSE)+
  geom_point(size=0.1)+
  geom_density_2d()+
  geom_rug()

NA
library(MASS)
bici_density <- kde2d(bici_data$atemp,bici_data$hum, n=100)
bici_density$z <- bici_density$z/sum( bici_density$z) 
sum(bici_density$z)
[1] 1
cols1 <- colorRampPalette(c("red", "white", "blue"),
                                    space = "Lab")(256)
cols2 <- colorRampPalette(c("#FFFFD4", "#FED98E", "#FE9929", "#D95F0E", "#993404"),space="Lab")(256)
cols3<-colorRampPalette(c("black","blue","green","orange","red"))(1000)
image(bici_density$z,  
      col = cols3, 
      zlim=c(min(bici_density$z), max(bici_density$z)))

str(bici_density)
List of 3
 $ x: num [1:100] 0.151 0.157 0.162 0.168 0.173 ...
 $ y: num [1:100] 0.16 0.168 0.177 0.185 0.194 ...
 $ z: num [1:100, 1:100] 3.38e-15 7.71e-15 1.66e-14 3.36e-14 6.44e-14 ...
filterX<-bici_density$x>=0.5
LS0tCnRpdGxlOiAiRGlzdHJpYnVjaW9uZXMgZGUgcHJvYmFiaWxpZGFkIGJpdmFyaWFkYXMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCgojIyBEZWZpbmljacOzbiBQREYKVW5hIGRpc3RyaWJ1Y2nDs24gYml2YXJpYWRhIGVzIGRlIGxhIGZvcm1hICQkcCh5XzEseV8yKT1QKFlfMT15XzEsWV8yPXlfMikkJApsYSBjdWFsIHBvZGVtb3MgdmVyIHRpZW5lIGRvcyAqdmFyaWFibGVzIGFsZWF0b3JpYXMqLgoKIyMgUHJvcGllZGFkZXMKMS4gJHAoeV8xLnlfMilcZ2VxIDAkCjIuICRcc3VtX3t5XzF9XHN1bV97eV8yfXAoeV8xLHlfMik9MSwgXGZvcmFsbCAoeV8xLHlfMikkCgojIyBEZWZpbmljacOzbiBDREYKTGEgZnVuY2lvbiBkZSBkaXN0cmlidWNpw7NuIGFjdW11bGFkYSBzZSBkZWZpbmUgY29tbywKJCRGKHlfMSx5XzIpPVAoWV8xIFxsZXEgeV8xLCBZXzIgXGxlcSB5XzIpJCQKCiMjIyBDYXNvIERpc2NyZXRvCgokJFxzdW1fe3RfMSBcaW4gKC1caW5mdHkseV8xXX1cc3VtX3t0XzIgXGluICgtXGluZnR5LHlfMl19Zih0XzEsdF8yKSQkCgojIyMgQ2FzbyBjb250aW51bwokJFxpbnRfey1caW5mdHl9Xnt5XzF9XGludF97LVxpbmZ0eX1ee3lfMn1mKHRfMSx0XzIpZHRfMmR0XzEkJAoKIyMgUHJvcGllZGFkZXMKMS4gJEYoLVxpbmZ0eSwtXGluZnR5KT1GKC1caW5mdHkseV8yKT1GKHlfMSwtXGluZnR5KT0wJAoyLiAkRihcaW5mdHksIFxpbmZ0eSk9MSQKCiMjIEVqZW1wbG8gY2xhc2UKTGEgYWRtaW5pc3RyYWNpw7NuIGVuIHVuIHJlc3RhdXJhbnRlIGRlIGNvbWlkYSByw6FwaWRhIGVzdMOhIGludGVyZXNhZGEgZW4gZWwgY29tcG9ydGFtaWVudG8gY29uanVudG8gZGUgbGFzIHZhcmlhYmxlcyBhbGVhdG9yaWFzICRZXzEkLCBkZWZpbmlkYXMgY29tbyBlbCB0aWVtcG8gdG90YWwgZW50cmUgbGEgbGxlZ2FkYSBkZSB1biBjbGllbnRlIGEgbGEgdGllbmRhIHkgbGEgc2FsaWRhIGRlIGxhIHZlbnRhbmlsbGEgZGUgc2VydmljaW8geSAkWV8yJCwgZWwgdGllbXBvIHF1ZSB1biBjbGllbnRlIGVzcGVyYSBlbiBsYSBmaWxhIGFudGVzIGRlIGxsZWdhciBhIGxhIHZlbnRhbmlsbGEgZGUgc2VydmljaW8uIENvbW8gJFlfMSQgaW5jbHV5ZSBlbCB0aWVtcG8gcXVlIHVuIGNsaWVudGUgZXNwZXJhIGVuIGxhIGZpbGEsIGRlYmVtb3MgdGVuZXIgJFlfMSBcZ2VxIFlfMiQuIExhIGRpc3RyaWJ1Y2nDs24gZGUgZnJlY3VlbmNpYSByZWxhdGl2YSBkZSB2YWxvcmVzIG9ic2VydmFkb3MgZGUgJFlfMSQgeSAkWV8yJCBwdWVkZSBzZXIgbW9kZWxhZGEgcG9yIGxhIGZ1bmNpw7NuIGRlIGRlbnNpZGFkIGRlIHByb2JhYmlsaWRhZAokJGYoeV8xLHlfMik9XGJlZ2lue2Nhc2VzfQplXnsteV8xfSAmIFx0ZXh0eyAsIH0gMCBcbGVxIHlfMiBcbGVxIHlfMSA8IFxpbmZ0eSBcXCAKMCAmIFx0ZXh0eyAsICBlbiBjdWFscXVpZXIgb3RybyBwdW50b30gICAKXGVuZHtjYXNlc30kJAoKCgpDb24gZWwgdGllbXBvIG1lZGlkbyBlbiBtaW51dG9zLiBFbmN1ZW50cmUKCmEuICRQKFlfMTwyLCBZXzI+MSkkCmIuICRQKFlfMSBcZ2VxIDJZXzIpJApjLiAkUChZXzEtWV8yIFxnZXEgMSkkIChPYnNlcnZlc2UgcXVlICRZXzEtWV8yJCBkZW5vdGEgZWwgdGllbXBvIHF1ZSBzZSBwYXNhIGVuIGxhIHZlbnRhbmlsbGEgZGUgc2VydmljaW8pCgoKIyBMYWJvcmF0b3JpbyBlbiBSCgpVc2FyZW1vcyBlbCBkYXRhc2V0IGRlbWFuZGEgZGUgYmljaWNsZXRhcy4gUGFyYSBkZXRlcm1pbmFyIGRlbW9zdHJhciBsYSB1dGlsaXphY2lvbiBlbiBjYW1wbyBkZSBsYSB0ZW9yaWEgYXByZW5kaWRhZCBlbiBjbGFzZS4gRWwgZGF0YXNldCBsbyBwdWVkZSBlbmNvbnRyYXIgZW4gZWwgR0VTLgoKYGBge3J9CmJpY2k8LSByZWFkLmNzdigiaG91ci5jc3YiLAogICAgICAgICAgICAgICAgbmEuc3RyaW5ncyA9IEZBTFNFLAogICAgICAgICAgICAgICAgc3RyaXAud2hpdGUgPSBUUlVFKQpgYGAKCmBgYHtyfQpjb2xuYW1lcyhiaWNpKQpgYGAKCioqZGF0ZXRpbWUqKiAtIGhvdXJseSBkYXRlICsgdGltZXN0YW1wIAoKKipzZWFzb24qKiAtICAxID0gc3ByaW5nLCAyID0gc3VtbWVyLCAzID0gZmFsbCwgNCA9IHdpbnRlciAKCioqaG9saWRheSoqIC0gd2hldGhlciB0aGUgZGF5IGlzIGNvbnNpZGVyZWQgYSBob2xpZGF5CgoqKndvcmtpbmdkYXkqKiAtIHdoZXRoZXIgdGhlIGRheSBpcyBuZWl0aGVyIGEgd2Vla2VuZCBub3IgaG9saWRheQoKKip3ZWF0aGVyKiogLSAqMToqIENsZWFyLCBGZXcgY2xvdWRzLCBQYXJ0bHkgY2xvdWR5LCBQYXJ0bHkgY2xvdWR5CioyOiogTWlzdCArIENsb3VkeSwgTWlzdCArIEJyb2tlbiBjbG91ZHMsIE1pc3QgKyBGZXcgY2xvdWRzLCBNaXN0IAoqMzoqIExpZ2h0IFNub3csIExpZ2h0IFJhaW4gKyBUaHVuZGVyc3Rvcm0gKyBTY2F0dGVyZWQgY2xvdWRzLCBMaWdodCBSYWluICsgU2NhdHRlcmVkIGNsb3VkcyAKKjQ6KiBIZWF2eSBSYWluICsgSWNlIFBhbGxldHMgKyBUaHVuZGVyc3Rvcm0gKyBNaXN0LCBTbm93ICsgRm9nIAogICAgICAgICAgICAKKip0ZW1wKiogLSB0ZW1wZXJhdHVyZSBpbiBDZWxzaXVzCgoqKmF0ZW1wKiogLSAiZmVlbHMgbGlrZSIgdGVtcGVyYXR1cmUgaW4gQ2Vsc2l1cwoKKipodW1pZGl0eSoqIC0gcmVsYXRpdmUgaHVtaWRpdHkKCioqd2luZHNwZWVkKiogLSB3aW5kIHNwZWVkCgoqKmNhc3VhbCoqIC0gbnVtYmVyIG9mIG5vbi1yZWdpc3RlcmVkIHVzZXIgcmVudGFscyBpbml0aWF0ZWQKCioqcmVnaXN0ZXJlZCoqIC0gbnVtYmVyIG9mIHJlZ2lzdGVyZWQgdXNlciByZW50YWxzIGluaXRpYXRlZAoKKipjb3VudCoqIC0gbnVtYmVyIG9mIHRvdGFsIHJlbnRhbHMKCmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncGxvdDIpCmBgYAoKCgoKCgoKYGBge3J9CnNlYXNvbjwtNApiaWNpX2RhdGE8LQpiaWNpICU+JSAgCiAgZHBseXI6OnNlbGVjdChzZWFzb24sIGF0ZW1wLCBodW0sIGNudCkgJT4lIAogIGZpbHRlcihzZWFzb24gPT0gNCkgIApgYGAKCgoKYGBge3J9Cmhpc3QoYmljaV9kYXRhJGF0ZW1wKQpgYGAKCmBgYHtyfQpoaXN0KGJpY2lfZGF0YSRodW0pCmBgYAoKCgpgYGB7cn0KYmljaV9kYXRhICU+JSAKICBnZ3Bsb3QoYWVzKHg9YXRlbXApKSsKICBnZW9tX2hpc3RvZ3JhbShiaW5zPTMwLCBhZXMoeSA9IC4uZGVuc2l0eS4uKSApKwogIGdlb21fcnVnKCkrCiAgZ2VvbV9kZW5zaXR5KCkKYGBgCgoKYGBge3J9CmJpY2lfZGF0YSAlPiUgCiAgZ2dwbG90KGFlcyhodW0pKSsKICBnZW9tX2hpc3RvZ3JhbShiaW5zPTMwLCBhZXMoeSA9IC4uZGVuc2l0eS4uKSApKwogIGdlb21fcnVnKCkrCiAgZ2VvbV9kZW5zaXR5KCkKYGBgCgoKYGBge3J9CmJpY2kgJT4lICAKICBkcGx5cjo6c2VsZWN0KHNlYXNvbiwgYXRlbXAsIGh1bSwgY250KSAlPiUgCiAgZmlsdGVyKHNlYXNvbiA9PSA0KSAlPiUKICBnZ3Bsb3QoIGFlcyhhdGVtcCwgaHVtKSApICsKICBnZW9tX3Jhc3RlcihhZXMoZmlsbD1jbnQpLCBpbnRlcnBvbGF0ZSA9IEZBTFNFKSsKICBnZW9tX3BvaW50KHNpemU9MC4xKSsKICBnZW9tX2RlbnNpdHlfMmQoKSsKICBnZW9tX3J1ZygpCiAgCmBgYAoKCgoKCgoKYGBge3J9CmxpYnJhcnkoTUFTUykKYmljaV9kZW5zaXR5IDwtIGtkZTJkKGJpY2lfZGF0YSRhdGVtcCxiaWNpX2RhdGEkaHVtLCBuPTEwMCkKYmljaV9kZW5zaXR5JHogPC0gYmljaV9kZW5zaXR5JHovc3VtKCBiaWNpX2RlbnNpdHkkeikgCnN1bShiaWNpX2RlbnNpdHkkeikKCgpgYGAKCgoKCmBgYHtyfQpjb2xzMSA8LSBjb2xvclJhbXBQYWxldHRlKGMoInJlZCIsICJ3aGl0ZSIsICJibHVlIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNwYWNlID0gIkxhYiIpKDI1NikKCmNvbHMyIDwtIGNvbG9yUmFtcFBhbGV0dGUoYygiI0ZGRkZENCIsICIjRkVEOThFIiwgIiNGRTk5MjkiLCAiI0Q5NUYwRSIsICIjOTkzNDA0Iiksc3BhY2U9IkxhYiIpKDI1NikKCmNvbHMzPC1jb2xvclJhbXBQYWxldHRlKGMoImJsYWNrIiwiYmx1ZSIsImdyZWVuIiwib3JhbmdlIiwicmVkIikpKDEwMDApCgoKaW1hZ2UoYmljaV9kZW5zaXR5JHosICAKICAgICAgY29sID0gY29sczMsIAogICAgICB6bGltPWMobWluKGJpY2lfZGVuc2l0eSR6KSwgbWF4KGJpY2lfZGVuc2l0eSR6KSkpCmBgYAoKCmBgYHtyfQpzdHIoYmljaV9kZW5zaXR5KQpgYGAKCgpgYGB7cn0KZmlsdGVyWDwtYmljaV9kZW5zaXR5JHg+PTAuNQoKYGBgCgo=