The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.data<-anscombe
x1<-data[,1]
x2<-data[,2]
x3<-data[,3]
x4<-data[,4]
y1<-data[,5]
y2<-data[,6]
y3<-data[,7]
y4<-data[,8]
fBasics() package!)library("fBasics")
## Warning: package 'fBasics' was built under R version 3.3.2
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.3.2
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.3.2
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
mean(x1)
## [1] 9
var(x1)
## [1] 11
mean(x2)
## [1] 9
var(x2)
## [1] 11
mean(x3)
## [1] 9
var(x3)
## [1] 11
mean(x4)
## [1] 9
var(x4)
## [1] 11
mean(y1)
## [1] 7.500909
var(y1)
## [1] 4.127269
mean(y2)
## [1] 7.500909
var(y2)
## [1] 4.127629
mean(y3)
## [1] 7.5
var(y3)
## [1] 4.12262
mean(y4)
## [1] 7.500909
var(y4)
## [1] 4.123249
correlationTest(x1,y1)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Mon Jan 30 20:16:08 2017
correlationTest(x2,y2)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Mon Jan 30 20:16:08 2017
correlationTest(x3,y3)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Mon Jan 30 20:16:08 2017
correlationTest(x4,y4)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Mon Jan 30 20:16:08 2017
plot(x1, y1, main="Scatterplot between x1,y1")
plot(x2, y2, main="Scatterplot between x2,y2")
plot(x3, y3, main="Scatterplot between x3,y3")
plot(x4, y4, main="Scatterplot between x4,y4")
par(mfrow=c(2,2))
plot(x1,y1, main="Scatterplot between x1,y1",pch=19)
plot(x2,y2, main="Scatterplot between x2,y2",pch=19)
plot(x3,y3, main="Scatterplot between x3,y3",pch=19)
plot(x4,y4, main="Scatterplot between x4,y4",pch=19)
lm() function.fit1<-lm(y1~x1)
fit2<-lm(y2~x2)
fit3<-lm(y3~x3)
fit4<-lm(y4~x4)
par(mfrow=c(2,2))
plot(x1,y1, main="Scatterplot between x1,y1",pch=19)
abline(fit1, col="red") # regression line (y~x)
plot(x2,y2, main="Scatterplot between x2,y2",pch=19)
abline(fit2, col="red") # regression line (y~x)
plot(x3,y3, main="Scatterplot between x3,y3",pch=19)
abline(fit3, col="red") # regression line (y~x)
plot(x4,y4, main="Scatterplot between x4,y4",pch=19)
abline(fit4, col="red") # regression line (y~x)
anova(fit1)
Analysis of Variance Table
Response: y1 Df Sum Sq Mean Sq F value Pr(>F)
x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit2)
Analysis of Variance Table
Response: y2 Df Sum Sq Mean Sq F value Pr(>F)
x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit3)
Analysis of Variance Table
Response: y3 Df Sum Sq Mean Sq F value Pr(>F)
x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit4)
Analysis of Variance Table
Response: y4 Df Sum Sq Mean Sq F value Pr(>F)
x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Anscombe’s Quartet shows the value in visualising data as part of the analysis process. It shows that four datasets that have identical statistical properties can be very different.The statistical tests that identified the difference between data sets were the alternative methods for deriving correlation. His argument that “statistical analysis should always be combined with visualisation”" still holds true. Only by looking at the data it can’t be truly understood.