Objectives

The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.

Questions

  1. Anscombes quartet is a set of 4 \(x,y\) data sets that were published by Francis Anscombe in a 1973 paper Graphs in statistical analysis. For this first question load the anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.
data<-anscombe
x1<-data[,1]
x2<-data[,2]
x3<-data[,3]
x4<-data[,4]
y1<-data[,5]
y2<-data[,6]
y3<-data[,7]
y4<-data[,8]
  1. Summarise the data by calculating the mean, variance, for each column and the correlation between each pair (eg. x1 and y1, x2 and y2, etc) (Hint: use the fBasics() package!)
library("fBasics")
## Warning: package 'fBasics' was built under R version 3.3.2
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.3.2
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.3.2
## 
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
mean(x1) 
## [1] 9
var(x1)
## [1] 11
mean(x2) 
## [1] 9
var(x2)
## [1] 11
mean(x3)
## [1] 9
var(x3)
## [1] 11
mean(x4)
## [1] 9
var(x4)
## [1] 11
mean(y1)
## [1] 7.500909
var(y1) 
## [1] 4.127269
mean(y2) 
## [1] 7.500909
var(y2)
## [1] 4.127629
mean(y3) 
## [1] 7.5
var(y3)
## [1] 4.12262
mean(y4)
## [1] 7.500909
var(y4) 
## [1] 4.123249
correlationTest(x1,y1)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8164
##   STATISTIC:
##     t: 4.2415
##   P VALUE:
##     Alternative Two-Sided: 0.00217 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001085 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4244, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5113, 1
## 
## Description:
##  Mon Jan 30 20:16:08 2017
correlationTest(x2,y2)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8162
##   STATISTIC:
##     t: 4.2386
##   P VALUE:
##     Alternative Two-Sided: 0.002179 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001089 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4239, 0.9506
##          Less: -1, 0.9387
##       Greater: 0.5109, 1
## 
## Description:
##  Mon Jan 30 20:16:08 2017
correlationTest(x3,y3)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8163
##   STATISTIC:
##     t: 4.2394
##   P VALUE:
##     Alternative Two-Sided: 0.002176 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001088 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4241, 0.9507
##          Less: -1, 0.9387
##       Greater: 0.511, 1
## 
## Description:
##  Mon Jan 30 20:16:08 2017
correlationTest(x4,y4)
## 
## Title:
##  Pearson's Correlation Test
## 
## Test Results:
##   PARAMETER:
##     Degrees of Freedom: 9
##   SAMPLE ESTIMATES:
##     Correlation: 0.8165
##   STATISTIC:
##     t: 4.243
##   P VALUE:
##     Alternative Two-Sided: 0.002165 
##     Alternative      Less: 0.9989 
##     Alternative   Greater: 0.001082 
##   CONFIDENCE INTERVAL:
##     Two-Sided: 0.4246, 0.9507
##          Less: -1, 0.9388
##       Greater: 0.5115, 1
## 
## Description:
##  Mon Jan 30 20:16:08 2017
  1. Create scatter plots for each \(x, y\) pair of data.
plot(x1, y1, main="Scatterplot between x1,y1") 

plot(x2, y2, main="Scatterplot between x2,y2") 

plot(x3, y3, main="Scatterplot between x3,y3")

plot(x4, y4, main="Scatterplot between x4,y4")  

  1. Now change the symbols on the scatter plots to solid circles and plot them together as a 4 panel graphic
par(mfrow=c(2,2))
plot(x1,y1, main="Scatterplot between x1,y1",pch=19) 
plot(x2,y2, main="Scatterplot between x2,y2",pch=19) 
plot(x3,y3, main="Scatterplot between x3,y3",pch=19) 
plot(x4,y4, main="Scatterplot between x4,y4",pch=19) 

  1. Now fit a linear model to each data set using the lm() function.
fit1<-lm(y1~x1)
fit2<-lm(y2~x2)
fit3<-lm(y3~x3)
fit4<-lm(y4~x4)
  1. Now combine the last two tasks. Create a four panel scatter plot matrix that has both the data points and the regression lines. (hint: the model objects will carry over chunks!)
par(mfrow=c(2,2))
plot(x1,y1, main="Scatterplot between x1,y1",pch=19) 
abline(fit1, col="red") # regression line (y~x)
plot(x2,y2, main="Scatterplot between x2,y2",pch=19) 
abline(fit2, col="red") # regression line (y~x)
plot(x3,y3, main="Scatterplot between x3,y3",pch=19) 
abline(fit3, col="red") # regression line (y~x)
plot(x4,y4, main="Scatterplot between x4,y4",pch=19) 
abline(fit4, col="red") # regression line (y~x)

  1. Now compare the model fits for each model object.
anova(fit1)

Analysis of Variance Table

Response: y1 Df Sum Sq Mean Sq F value Pr(>F)
x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

anova(fit2)

Analysis of Variance Table

Response: y2 Df Sum Sq Mean Sq F value Pr(>F)
x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

anova(fit3)

Analysis of Variance Table

Response: y3 Df Sum Sq Mean Sq F value Pr(>F)
x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

anova(fit4)

Analysis of Variance Table

Response: y4 Df Sum Sq Mean Sq F value Pr(>F)
x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

  1. In text, summarize the lesson of Anscombe’s Quartet and what it says about the value of data visualization.

Anscombe’s Quartet shows the value in visualising data as part of the analysis process. It shows that four datasets that have identical statistical properties can be very different.The statistical tests that identified the difference between data sets were the alternative methods for deriving correlation. His argument that “statistical analysis should always be combined with visualisation”" still holds true. Only by looking at the data it can’t be truly understood.