Correlation Stuff

Correlations - what are they?

Let’s test them for bmi, mvpa3.all, and mvpa4.all. This is not looking at significance, just the correlation estimates.

df %>% 
    dplyr::select(bmi, mvpa3.all, mvpa4.all) %>% 
    cor()
bmi mvpa3.all mvpa4.all
bmi 1.0000000 -0.3931878 -0.4541171
mvpa3.all -0.3931878 1.0000000 0.8854185
mvpa4.all -0.4541171 0.8854185 1.0000000

Next, we run a Spearman’s Correlation Test which is showing the significance of the association between paired samples. Essentially, is there correlation that is non-zero between these variables. This does not, however, test whether there is a significant association. Just correlation.

## First, bmi to mets3+
(m1 <- cor.test(df$bmi, df$mvpa3.all, method = 'kendall'))
## 
##  Kendall's rank correlation tau
## 
## data:  df$bmi and df$mvpa3.all
## z = -2.652, p-value = 0.008001
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##        tau 
## -0.2591987
## Next, bmi to mets4+
(m2 <- cor.test(df$bmi, df$mvpa4.all, method = "kendall"))
## 
##  Kendall's rank correlation tau
## 
## data:  df$bmi and df$mvpa4.all
## z = -3.8679, p-value = 0.0001098
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##        tau 
## -0.3797835

Explanatory Approach-ish

Let’s do some MANCOVA

Why do we want to do this? We want to check if certain variables significantly explain the variance associated with our two dependent variables. Let’s try this.

# Model where we asssess the significance of covariates on the two METS stuffs
mv1 <- manova(cbind(mvpa3.all, mvpa4.all) ~ age + k.pain + k.symptom + k.adl + k.qol + k.sport + intention + bmi, data = df)
summary(mv1)
##           Df   Pillai approx F num Df den Df    Pr(>F)    
## age        1 0.208315   5.2626      2     40 0.0093551 ** 
## k.pain     1 0.100041   2.2232      2     40 0.1214666    
## k.symptom  1 0.018232   0.3714      2     40 0.6921176    
## k.adl      1 0.173803   4.2073      2     40 0.0219622 *  
## k.qol      1 0.020334   0.4151      2     40 0.6630731    
## k.sport    1 0.039011   0.8119      2     40 0.4511999    
## intention  1 0.105263   2.3529      2     40 0.1081214    
## bmi        1 0.302392   8.6694      2     40 0.0007451 ***
## Residuals 41                                              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There seems to be indication that age, k.adl, and bmi may be significantly associated with the METS outcomes.

Let’s do the same thing, but with attitude, subjective, and perceived instead of intention.

# Model where we asssess the significance of covariates on the two METS stuffs
mv2 <- manova(cbind(mvpa3.all, mvpa4.all) ~ age + k.pain + k.symptom + k.adl + k.qol + k.sport + attitude + subjective + perceived + bmi, data = df)
summary(mv2)
##            Df   Pillai approx F num Df den Df   Pr(>F)    
## age         1 0.206778   4.9529      2     38 0.012260 *  
## k.pain      1 0.100150   2.1146      2     38 0.134659    
## k.symptom   1 0.018054   0.3493      2     38 0.707400    
## k.adl       1 0.172940   3.9729      2     38 0.027114 *  
## k.qol       1 0.021044   0.4084      2     38 0.667577    
## k.sport     1 0.038656   0.7640      2     38 0.472820    
## attitude    1 0.080374   1.6606      2     38 0.203523    
## subjective  1 0.043050   0.8548      2     38 0.433403    
## perceived   1 0.030615   0.6001      2     38 0.553900    
## bmi         1 0.313151   8.6626      2     38 0.000795 ***
## Residuals  39                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let’s do some multiple regression

mr1 <- lm(mvpa4.all ~ age + factor(sex) + k.pain + k.symptom + k.adl + k.qol + k.sport + attitude + subjective + perceived + bmi, data = df)
summary(mr1)
## 
## Call:
## lm(formula = mvpa4.all ~ age + factor(sex) + k.pain + k.symptom + 
##     k.adl + k.qol + k.sport + attitude + subjective + perceived + 
##     bmi, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.232 -16.335  -4.115  12.744  84.619 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     259.25991   92.91070   2.790 0.008187 ** 
## age              -2.12250    0.62067  -3.420 0.001511 ** 
## factor(sex)Male  20.62589   11.92761   1.729 0.091881 .  
## k.pain           -0.67506    0.56390  -1.197 0.238670    
## k.symptom         0.35018    0.43693   0.801 0.427850    
## k.adl             1.01517    0.69531   1.460 0.152502    
## k.qol            -0.56243    0.46728  -1.204 0.236179    
## k.sport          -0.06168    0.21392  -0.288 0.774657    
## attitude         -1.69589    7.32357  -0.232 0.818117    
## subjective       11.58565    6.06509   1.910 0.063673 .  
## perceived        -9.18957    5.55544  -1.654 0.106334    
## bmi              -4.69111    1.10892  -4.230 0.000142 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.54 on 38 degrees of freedom
## Multiple R-squared:  0.5177, Adjusted R-squared:  0.378 
## F-statistic: 3.708 on 11 and 38 DF,  p-value: 0.001227
mr2 <- lm(mvpa4.all ~ age + factor(sex) + k.pain + k.symptom + k.adl + k.qol + k.sport + intention + bmi, data = df)
summary(mr2)
## 
## Call:
## lm(formula = mvpa4.all ~ age + factor(sex) + k.pain + k.symptom + 
##     k.adl + k.qol + k.sport + intention + bmi, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -38.049 -16.487  -7.462   4.004  85.875 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     182.70435   74.33761   2.458 0.018410 *  
## age              -1.86275    0.56713  -3.285 0.002129 ** 
## factor(sex)Male  13.12889   12.19554   1.077 0.288139    
## k.pain           -0.52116    0.57291  -0.910 0.368444    
## k.symptom         0.10971    0.41199   0.266 0.791375    
## k.adl             0.55355    0.70041   0.790 0.434003    
## k.qol            -0.48625    0.46651  -1.042 0.303527    
## k.sport           0.05837    0.19795   0.295 0.769616    
## intention        11.84863    8.17433   1.449 0.154996    
## bmi              -3.70186    0.91849  -4.030 0.000243 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.8 on 40 degrees of freedom
## Multiple R-squared:  0.4834, Adjusted R-squared:  0.3671 
## F-statistic: 4.159 on 9 and 40 DF,  p-value: 0.0007702
mr1 <- lm(mvpa4.all ~ age + sex + k.pain + k.symptom + k.adl + k.qol + k.sport + attitude + subjective + perceived + bmi, data = df)
summary(mr1)
## 
## Call:
## lm(formula = mvpa4.all ~ age + sex + k.pain + k.symptom + k.adl + 
##     k.qol + k.sport + attitude + subjective + perceived + bmi, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.232 -16.335  -4.115  12.744  84.619 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 259.25991   92.91070   2.790 0.008187 ** 
## age          -2.12250    0.62067  -3.420 0.001511 ** 
## sexMale      20.62589   11.92761   1.729 0.091881 .  
## k.pain       -0.67506    0.56390  -1.197 0.238670    
## k.symptom     0.35018    0.43693   0.801 0.427850    
## k.adl         1.01517    0.69531   1.460 0.152502    
## k.qol        -0.56243    0.46728  -1.204 0.236179    
## k.sport      -0.06168    0.21392  -0.288 0.774657    
## attitude     -1.69589    7.32357  -0.232 0.818117    
## subjective   11.58565    6.06509   1.910 0.063673 .  
## perceived    -9.18957    5.55544  -1.654 0.106334    
## bmi          -4.69111    1.10892  -4.230 0.000142 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.54 on 38 degrees of freedom
## Multiple R-squared:  0.5177, Adjusted R-squared:  0.378 
## F-statistic: 3.708 on 11 and 38 DF,  p-value: 0.001227

Predictive Approach

Let’s try a stepwise regression approach, optimizing for AIC

METS 3+

df3 <- df %>% 
    dplyr::select(age,
           sex,
           comorb,
           k.pain,
           k.symptom,
           k.adl,
           k.sport,
           k.qol,
           attitude,
           subjective,
           perceived,
           bmi,
           mvpa3.all)

t3 <- lm(mvpa3.all ~ ., data = df3)
step <- stepAIC(t3, direction="both")
## Start:  AIC=395.85
## mvpa3.all ~ age + sex + comorb + k.pain + k.symptom + k.adl + 
##     k.sport + k.qol + attitude + subjective + perceived + bmi
## 
##              Df Sum of Sq    RSS    AIC
## - k.sport     1       131  81682 393.93
## - comorb      1       265  81815 394.01
## - k.symptom   1       690  82240 394.27
## - attitude    1      1197  82747 394.58
## - subjective  1      2074  83624 395.10
## - perceived   1      2434  83984 395.32
## <none>                     81550 395.85
## - k.pain      1      5012  86562 396.83
## - k.adl       1      6641  88192 397.76
## - sex         1      7132  88682 398.04
## - k.qol       1      7221  88772 398.09
## - age         1     30859 112409 409.89
## - bmi         1     34546 116096 411.51
## 
## Step:  AIC=393.93
## mvpa3.all ~ age + sex + comorb + k.pain + k.symptom + k.adl + 
##     k.qol + attitude + subjective + perceived + bmi
## 
##              Df Sum of Sq    RSS    AIC
## - comorb      1       250  81931 392.08
## - k.symptom   1       884  82566 392.47
## - attitude    1      1120  82801 392.61
## - subjective  1      2503  84185 393.44
## <none>                     81682 393.93
## - perceived   1      3592  85273 394.08
## - k.pain      1      6171  87852 395.57
## + k.sport     1       131  81550 395.85
## - sex         1      7034  88716 396.06
## - k.qol       1      7120  88802 396.11
## - k.adl       1      7735  89417 396.45
## - age         1     31811 113492 408.37
## - bmi         1     36654 118336 410.46
## 
## Step:  AIC=392.08
## mvpa3.all ~ age + sex + k.pain + k.symptom + k.adl + k.qol + 
##     attitude + subjective + perceived + bmi
## 
##              Df Sum of Sq    RSS    AIC
## - k.symptom   1       885  82816 390.62
## - attitude    1       971  82902 390.67
## - subjective  1      2307  84238 391.47
## <none>                     81931 392.08
## - perceived   1      3856  85787 392.38
## - k.pain      1      6401  88332 393.84
## + comorb      1       250  81682 393.93
## + k.sport     1       116  81815 394.01
## - sex         1      6868  88799 394.11
## - k.qol       1      7079  89010 394.22
## - k.adl       1      7917  89848 394.69
## - age         1     33274 115205 407.12
## - bmi         1     39939 121870 409.93
## 
## Step:  AIC=390.62
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + attitude + subjective + 
##     perceived + bmi
## 
##              Df Sum of Sq    RSS    AIC
## - attitude    1       717  83534 389.05
## - subjective  1      1981  84797 389.80
## - perceived   1      3234  86051 390.53
## <none>                     82816 390.62
## - k.pain      1      5529  88346 391.85
## + k.symptom   1       885  81931 392.08
## - k.qol       1      6196  89012 392.23
## + k.sport     1       302  82515 392.44
## + comorb      1       251  82566 392.47
## - sex         1      6756  89572 392.54
## - k.adl       1      7513  90330 392.96
## - age         1     32446 115262 405.15
## - bmi         1     40309 123125 408.45
## 
## Step:  AIC=389.05
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + subjective + 
##     perceived + bmi
## 
##              Df Sum of Sq    RSS    AIC
## - subjective  1      2112  85646 388.30
## <none>                     83534 389.05
## - perceived   1      4632  88165 389.75
## - k.pain      1      5512  89045 390.24
## - k.qol       1      5865  89399 390.44
## + attitude    1       717  82816 390.62
## + k.symptom   1       631  82902 390.67
## - sex         1      6717  90251 390.92
## + k.sport     1       174  83359 390.94
## + comorb      1       116  83417 390.98
## - k.adl       1      7361  90895 391.27
## - age         1     33512 117045 403.91
## - bmi         1     47463 130997 409.55
## 
## Step:  AIC=388.3
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + perceived + 
##     bmi
## 
##              Df Sum of Sq    RSS    AIC
## - perceived   1      3028  88674 388.03
## <none>                     85646 388.30
## + subjective  1      2112  83534 389.05
## - sex         1      5535  91180 389.43
## - k.qol       1      5878  91524 389.62
## + attitude    1       848  84797 389.80
## - k.pain      1      6381  92027 389.89
## + k.sport     1       528  85117 389.99
## + k.symptom   1       344  85302 390.10
## + comorb      1         6  85640 390.29
## - k.adl       1      7340  92985 390.41
## - age         1     31407 117053 401.92
## - bmi         1     45455 131101 407.58
## 
## Step:  AIC=388.03
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + bmi
## 
##              Df Sum of Sq    RSS    AIC
## <none>                     88674 388.03
## + perceived   1      3028  85646 388.30
## - sex         1      4560  93233 388.54
## + attitude    1      1973  86701 388.91
## - k.qol       1      5649  94323 389.12
## + k.sport     1      1479  87195 389.19
## - k.adl       1      6505  95179 389.57
## + subjective  1       508  88165 389.75
## + comorb      1        96  88577 389.98
## + k.symptom   1        20  88653 390.02
## - k.pain      1      8495  97169 390.61
## - age         1     31455 120128 401.21
## - bmi         1     43398 132072 405.95
step$anova # display results
Step Df Deviance Resid. Df Resid. Dev AIC
NA NA 37 81550.21 395.8476
- k.sport 1 131.4061 38 81681.61 393.9281
- comorb 1 249.7261 39 81931.34 392.0807
- k.symptom 1 884.9722 40 82816.31 390.6179
- attitude 1 717.1921 41 83533.50 389.0490
- subjective 1 2112.1999 42 85645.70 388.2976
- perceived 1 3027.8388 43 88673.54 388.0347
sm3 <- lm(mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + bmi, data = df3)
summary(sm3)
## 
## Call:
## lm(formula = mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + 
##     bmi, data = df3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.750 -29.333   3.017  23.061 143.592 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 457.5734    88.6834   5.160 5.99e-06 ***
## age          -3.1773     0.8135  -3.906 0.000327 ***
## sexMale      25.1008    16.8800   1.487 0.144307    
## k.pain       -1.4874     0.7328  -2.030 0.048607 *  
## k.adl         1.7515     0.9862   1.776 0.082790 .  
## k.qol        -1.0564     0.6383  -1.655 0.105187    
## bmi          -5.8919     1.2843  -4.587 3.86e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 45.41 on 43 degrees of freedom
## Multiple R-squared:  0.5205, Adjusted R-squared:  0.4536 
## F-statistic:  7.78 on 6 and 43 DF,  p-value: 1.064e-05
lm.1.ef <- sjp.lm(sm3, type = "dots", y.offset = .4, 
                 geom.colors = color, prnt.plot = FALSE,
                 axis.labels = c("a, b, c, d, e, f"))

lm.1.ef$plot +
    theme(strip.text.x = element_text(size = 10),
          plot.title = element_text(family = "OpenSans-CondensedBold", size = 12),
          plot.subtitle=element_text(family="OpenSans-CondensedLightItalic"),
          panel.grid.major.y=element_line(color="#2b2b2b", linetype="dotted", size=0.15),
          plot.margin=unit(rep(0.5, 4), "cm")) +
    ggtitle('Linear Model Estimates: METs 3+', 
            subtitle = "mvpa3+ ~ age + sex + KOOS.pain + KOOS.adl + KOOS.qol + BMI")

METS 4+

df4 <- df %>% 
    dplyr::select(age,
           sex,
           comorb,
           k.pain,
           k.symptom,
           k.adl,
           k.sport,
           k.qol,
           attitude,
           subjective,
           perceived,
           bmi,
           mvpa4.all)

t4 <- lm(mvpa4.all ~ ., data = df4)
step <- stepAIC(t4, direction="both")
## Start:  AIC=352.43
## mvpa4.all ~ age + sex + comorb + k.pain + k.symptom + k.adl + 
##     k.sport + k.qol + attitude + subjective + perceived + bmi
## 
##              Df Sum of Sq   RSS    AIC
## - k.sport     1      53.4 34275 350.51
## - attitude    1     175.2 34397 350.68
## - k.symptom   1     580.3 34802 351.27
## - k.pain      1    1116.4 35338 352.03
## - comorb      1    1209.1 35431 352.17
## <none>                    34222 352.43
## - k.qol       1    1413.4 35635 352.45
## - k.adl       1    1781.0 36003 352.97
## - perceived   1    2114.9 36337 353.43
## - sex         1    3685.0 37907 355.54
## - subjective  1    3970.8 38192 355.92
## - age         1   12110.0 46332 365.58
## - bmi         1   17713.2 51935 371.29
## 
## Step:  AIC=350.51
## mvpa4.all ~ age + sex + comorb + k.pain + k.symptom + k.adl + 
##     k.qol + attitude + subjective + perceived + bmi
## 
##              Df Sum of Sq   RSS    AIC
## - attitude    1     201.9 34477 348.80
## - k.symptom   1     530.1 34805 349.27
## - k.pain      1    1075.5 35351 350.05
## - comorb      1    1233.2 35508 350.27
## <none>                    34275 350.51
## - k.qol       1    1587.3 35862 350.77
## - k.adl       1    1746.6 36022 350.99
## - perceived   1    2246.0 36521 351.68
## + k.sport     1      53.4 34222 352.43
## - subjective  1    3995.3 38270 354.02
## - sex         1    4034.3 38309 354.07
## - age         1   12092.8 46368 363.62
## - bmi         1   17987.0 52262 369.60
## 
## Step:  AIC=348.8
## mvpa4.all ~ age + sex + comorb + k.pain + k.symptom + k.adl + 
##     k.qol + subjective + perceived + bmi
## 
##              Df Sum of Sq   RSS    AIC
## - k.symptom   1     443.7 34921 347.44
## - k.pain      1    1039.0 35516 348.29
## - comorb      1    1097.3 35574 348.37
## <none>                    34477 348.80
## - k.qol       1    1461.9 35939 348.88
## - k.adl       1    1704.7 36182 349.21
## + attitude    1     201.9 34275 350.51
## + k.sport     1      80.2 34397 350.68
## - perceived   1    2823.3 37300 350.74
## - sex         1    3936.3 38413 352.21
## - subjective  1    3992.9 38470 352.28
## - age         1   13030.0 47507 362.83
## - bmi         1   22884.1 57361 372.25
## 
## Step:  AIC=347.44
## mvpa4.all ~ age + sex + comorb + k.pain + k.adl + k.qol + subjective + 
##     perceived + bmi
## 
##              Df Sum of Sq   RSS    AIC
## - k.pain      1     720.7 35641 346.46
## - k.qol       1    1103.1 36024 347.00
## - comorb      1    1139.8 36060 347.05
## <none>                    34921 347.44
## - k.adl       1    1572.9 36494 347.64
## - perceived   1    2422.4 37343 348.79
## + k.symptom   1     443.7 34477 348.80
## + attitude    1     115.6 34805 349.27
## + k.sport     1      11.5 34909 349.42
## - subjective  1    3716.0 38637 350.50
## - sex         1    3904.1 38825 350.74
## - age         1   12796.6 47717 361.05
## - bmi         1   22753.4 57674 370.53
## 
## Step:  AIC=346.46
## mvpa4.all ~ age + sex + comorb + k.adl + k.qol + subjective + 
##     perceived + bmi
## 
##              Df Sum of Sq   RSS    AIC
## - k.adl       1     855.0 36496 345.65
## - k.qol       1    1277.1 36918 346.22
## - comorb      1    1298.6 36940 346.25
## <none>                    35641 346.46
## + k.pain      1     720.7 34921 347.44
## + k.symptom   1     125.4 35516 348.29
## + attitude    1     121.6 35520 348.29
## + k.sport     1      12.3 35629 348.44
## - perceived   1    3158.9 38800 348.71
## - subjective  1    4197.9 39839 350.03
## - sex         1    4330.1 39971 350.19
## - age         1   14245.4 49887 361.27
## - bmi         1   27998.5 63640 373.45
## 
## Step:  AIC=345.65
## mvpa4.all ~ age + sex + comorb + k.qol + subjective + perceived + 
##     bmi
## 
##              Df Sum of Sq   RSS    AIC
## - k.qol       1     429.4 36926 344.23
## - comorb      1    1326.2 37823 345.43
## <none>                    36496 345.65
## + k.adl       1     855.0 35641 346.46
## - perceived   1    2456.3 38953 346.90
## + k.symptom   1     253.8 36243 347.30
## + attitude    1      96.9 36399 347.51
## + k.sport     1      45.3 36451 347.59
## + k.pain      1       2.8 36494 347.64
## - subjective  1    3882.4 40379 348.70
## - sex         1    4179.6 40676 349.07
## - age         1   18660.9 55157 364.30
## - bmi         1   28080.5 64577 372.18
## 
## Step:  AIC=344.23
## mvpa4.all ~ age + sex + comorb + subjective + perceived + bmi
## 
##              Df Sum of Sq   RSS    AIC
## - comorb      1    1317.1 38243 343.98
## <none>                    36926 344.23
## + k.qol       1     429.4 36496 345.65
## + k.pain      1     224.6 36701 345.93
## + attitude    1      60.7 36865 346.15
## + k.sport     1      12.4 36913 346.22
## + k.adl       1       7.3 36918 346.22
## + k.symptom   1       0.1 36926 346.23
## - perceived   1    3885.0 40811 347.23
## - subjective  1    4315.2 41241 347.76
## - sex         1    4351.1 41277 347.80
## - age         1   18825.0 55751 362.83
## - bmi         1   27944.6 64870 370.41
## 
## Step:  AIC=343.98
## mvpa4.all ~ age + sex + subjective + perceived + bmi
## 
##              Df Sum of Sq   RSS    AIC
## <none>                    38243 343.98
## + comorb      1    1317.1 36926 344.23
## + k.qol       1     420.2 37823 345.43
## + k.pain      1     265.1 37978 345.64
## + k.adl       1      10.1 38233 345.97
## + k.sport     1       9.9 38233 345.97
## + attitude    1       1.5 38241 345.98
## + k.symptom   1       0.4 38242 345.98
## - sex         1    3373.8 41617 346.21
## - subjective  1    3630.0 41873 346.52
## - perceived   1    4316.6 42559 347.33
## - age         1   17508.2 55751 360.83
## - bmi         1   27212.0 65455 368.85
step$anova # display results
Step Df Deviance Resid. Df Resid. Dev AIC
NA NA 37 34221.61 352.4295
- k.sport 1 53.39329 38 34275.00 350.5074
- attitude 1 201.92885 39 34476.93 348.8011
- k.symptom 1 443.74241 40 34920.68 347.4406
- k.pain 1 720.68802 41 35641.36 346.4620
- k.adl 1 855.04468 42 36496.41 345.6473
- k.qol 1 429.36101 43 36925.77 344.2321
- comorb 1 1317.06350 44 38242.83 343.9844
sm4 <- lm(mvpa4.all ~ age + sex + subjective + perceived + bmi, data = df)
summary(sm4)
## 
## Call:
## lm(formula = mvpa4.all ~ age + sex + subjective + perceived + 
##     bmi, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.086 -16.338  -5.065   9.688  89.835 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 272.9046    52.4266   5.205 4.88e-06 ***
## age          -2.2864     0.5094  -4.488 5.12e-05 ***
## sexMale      22.0673    11.2005   1.970   0.0551 .  
## subjective   11.2010     5.4809   2.044   0.0470 *  
## perceived    -8.6078     3.8625  -2.229   0.0310 *  
## bmi          -4.4121     0.7885  -5.595 1.32e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 29.48 on 44 degrees of freedom
## Multiple R-squared:  0.4794, Adjusted R-squared:  0.4202 
## F-statistic: 8.103 on 5 and 44 DF,  p-value: 1.741e-05
lm.2.ef <- sjp.lm(sm4, type = "dots", y.offset = .4, 
                 geom.colors = color, prnt.plot = FALSE,
                 axis.labels = c("a, b, c, d, e, f"))

lm.2.ef$plot +
    theme(strip.text.x = element_text(size = 10),
          plot.title = element_text(family = "OpenSans-CondensedBold", size = 12),
          plot.subtitle=element_text(family="OpenSans-CondensedLightItalic"),
          panel.grid.major.y=element_line(color="#2b2b2b", linetype="dotted", size=0.15),
          plot.margin=unit(rep(0.5, 4), "cm")) +
    ggtitle('Linear Model Estimates: METs 4+', 
            subtitle = "mvpa3+ ~ sex + SubjectiveNorm + age + BMI + PBC ")

tab <- sjt.lm(sm3,sm4, group.pred = FALSE, no.output=TRUE, CSS = css.table, 
        show.aic = TRUE,
        show.ci = TRUE,
        show.dev = TRUE,
        show.re.var = TRUE,
        depvar.labels = c("METs 3+", "METs 4+"),
        show.header=TRUE
        )$knitr
Predictors Dependent Variables
  METs 3+   METs 4+
    B CI p   B CI p
(Intercept)   457.57 278.73 – 636.42 <.001   272.90 167.25 – 378.56 <.001
age   -3.18 -4.82 – -1.54 <.001   -2.29 -3.31 – -1.26 <.001
sex (Male)   25.10 -8.94 – 59.14 .144   22.07 -0.51 – 44.64 .055
k.pain   -1.49 -2.97 – -0.01 .049    
k.adl   1.75 -0.24 – 3.74 .083    
k.qol   -1.06 -2.34 – 0.23 .105    
bmi   -5.89 -8.48 – -3.30 <.001   -4.41 -6.00 – -2.82 <.001
subjective       11.20 0.15 – 22.25 .047
perceived       -8.61 -16.39 – -0.82 .031
Observations   50   50
R2 / adj. R2   .521 / .454   .479 / .420
AIC   531.929   487.878
Deviance   88673.542   38242.833