Let’s test them for bmi
, mvpa3.all
, and mvpa4.all
. This is not looking at significance, just the correlation estimates.
df %>%
dplyr::select(bmi, mvpa3.all, mvpa4.all) %>%
cor()
bmi | mvpa3.all | mvpa4.all | |
---|---|---|---|
bmi | 1.0000000 | -0.3931878 | -0.4541171 |
mvpa3.all | -0.3931878 | 1.0000000 | 0.8854185 |
mvpa4.all | -0.4541171 | 0.8854185 | 1.0000000 |
Next, we run a Spearman’s Correlation Test which is showing the significance of the association between paired samples. Essentially, is there correlation that is non-zero between these variables. This does not, however, test whether there is a significant association. Just correlation.
## First, bmi to mets3+
(m1 <- cor.test(df$bmi, df$mvpa3.all, method = 'kendall'))
##
## Kendall's rank correlation tau
##
## data: df$bmi and df$mvpa3.all
## z = -2.652, p-value = 0.008001
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## -0.2591987
## Next, bmi to mets4+
(m2 <- cor.test(df$bmi, df$mvpa4.all, method = "kendall"))
##
## Kendall's rank correlation tau
##
## data: df$bmi and df$mvpa4.all
## z = -3.8679, p-value = 0.0001098
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## -0.3797835
Why do we want to do this? We want to check if certain variables significantly explain the variance associated with our two dependent variables. Let’s try this.
# Model where we asssess the significance of covariates on the two METS stuffs
mv1 <- manova(cbind(mvpa3.all, mvpa4.all) ~ age + k.pain + k.symptom + k.adl + k.qol + k.sport + intention + bmi, data = df)
summary(mv1)
## Df Pillai approx F num Df den Df Pr(>F)
## age 1 0.208315 5.2626 2 40 0.0093551 **
## k.pain 1 0.100041 2.2232 2 40 0.1214666
## k.symptom 1 0.018232 0.3714 2 40 0.6921176
## k.adl 1 0.173803 4.2073 2 40 0.0219622 *
## k.qol 1 0.020334 0.4151 2 40 0.6630731
## k.sport 1 0.039011 0.8119 2 40 0.4511999
## intention 1 0.105263 2.3529 2 40 0.1081214
## bmi 1 0.302392 8.6694 2 40 0.0007451 ***
## Residuals 41
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
There seems to be indication that age
, k.adl
, and bmi
may be significantly associated with the METS outcomes.
Let’s do the same thing, but with attitude
, subjective
, and perceived
instead of intention
.
# Model where we asssess the significance of covariates on the two METS stuffs
mv2 <- manova(cbind(mvpa3.all, mvpa4.all) ~ age + k.pain + k.symptom + k.adl + k.qol + k.sport + attitude + subjective + perceived + bmi, data = df)
summary(mv2)
## Df Pillai approx F num Df den Df Pr(>F)
## age 1 0.206778 4.9529 2 38 0.012260 *
## k.pain 1 0.100150 2.1146 2 38 0.134659
## k.symptom 1 0.018054 0.3493 2 38 0.707400
## k.adl 1 0.172940 3.9729 2 38 0.027114 *
## k.qol 1 0.021044 0.4084 2 38 0.667577
## k.sport 1 0.038656 0.7640 2 38 0.472820
## attitude 1 0.080374 1.6606 2 38 0.203523
## subjective 1 0.043050 0.8548 2 38 0.433403
## perceived 1 0.030615 0.6001 2 38 0.553900
## bmi 1 0.313151 8.6626 2 38 0.000795 ***
## Residuals 39
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mr1 <- lm(mvpa4.all ~ age + factor(sex) + k.pain + k.symptom + k.adl + k.qol + k.sport + attitude + subjective + perceived + bmi, data = df)
summary(mr1)
##
## Call:
## lm(formula = mvpa4.all ~ age + factor(sex) + k.pain + k.symptom +
## k.adl + k.qol + k.sport + attitude + subjective + perceived +
## bmi, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48.232 -16.335 -4.115 12.744 84.619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 259.25991 92.91070 2.790 0.008187 **
## age -2.12250 0.62067 -3.420 0.001511 **
## factor(sex)Male 20.62589 11.92761 1.729 0.091881 .
## k.pain -0.67506 0.56390 -1.197 0.238670
## k.symptom 0.35018 0.43693 0.801 0.427850
## k.adl 1.01517 0.69531 1.460 0.152502
## k.qol -0.56243 0.46728 -1.204 0.236179
## k.sport -0.06168 0.21392 -0.288 0.774657
## attitude -1.69589 7.32357 -0.232 0.818117
## subjective 11.58565 6.06509 1.910 0.063673 .
## perceived -9.18957 5.55544 -1.654 0.106334
## bmi -4.69111 1.10892 -4.230 0.000142 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.54 on 38 degrees of freedom
## Multiple R-squared: 0.5177, Adjusted R-squared: 0.378
## F-statistic: 3.708 on 11 and 38 DF, p-value: 0.001227
mr2 <- lm(mvpa4.all ~ age + factor(sex) + k.pain + k.symptom + k.adl + k.qol + k.sport + intention + bmi, data = df)
summary(mr2)
##
## Call:
## lm(formula = mvpa4.all ~ age + factor(sex) + k.pain + k.symptom +
## k.adl + k.qol + k.sport + intention + bmi, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -38.049 -16.487 -7.462 4.004 85.875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 182.70435 74.33761 2.458 0.018410 *
## age -1.86275 0.56713 -3.285 0.002129 **
## factor(sex)Male 13.12889 12.19554 1.077 0.288139
## k.pain -0.52116 0.57291 -0.910 0.368444
## k.symptom 0.10971 0.41199 0.266 0.791375
## k.adl 0.55355 0.70041 0.790 0.434003
## k.qol -0.48625 0.46651 -1.042 0.303527
## k.sport 0.05837 0.19795 0.295 0.769616
## intention 11.84863 8.17433 1.449 0.154996
## bmi -3.70186 0.91849 -4.030 0.000243 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.8 on 40 degrees of freedom
## Multiple R-squared: 0.4834, Adjusted R-squared: 0.3671
## F-statistic: 4.159 on 9 and 40 DF, p-value: 0.0007702
mr1 <- lm(mvpa4.all ~ age + sex + k.pain + k.symptom + k.adl + k.qol + k.sport + attitude + subjective + perceived + bmi, data = df)
summary(mr1)
##
## Call:
## lm(formula = mvpa4.all ~ age + sex + k.pain + k.symptom + k.adl +
## k.qol + k.sport + attitude + subjective + perceived + bmi,
## data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48.232 -16.335 -4.115 12.744 84.619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 259.25991 92.91070 2.790 0.008187 **
## age -2.12250 0.62067 -3.420 0.001511 **
## sexMale 20.62589 11.92761 1.729 0.091881 .
## k.pain -0.67506 0.56390 -1.197 0.238670
## k.symptom 0.35018 0.43693 0.801 0.427850
## k.adl 1.01517 0.69531 1.460 0.152502
## k.qol -0.56243 0.46728 -1.204 0.236179
## k.sport -0.06168 0.21392 -0.288 0.774657
## attitude -1.69589 7.32357 -0.232 0.818117
## subjective 11.58565 6.06509 1.910 0.063673 .
## perceived -9.18957 5.55544 -1.654 0.106334
## bmi -4.69111 1.10892 -4.230 0.000142 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.54 on 38 degrees of freedom
## Multiple R-squared: 0.5177, Adjusted R-squared: 0.378
## F-statistic: 3.708 on 11 and 38 DF, p-value: 0.001227
df3 <- df %>%
dplyr::select(age,
sex,
comorb,
k.pain,
k.symptom,
k.adl,
k.sport,
k.qol,
attitude,
subjective,
perceived,
bmi,
mvpa3.all)
t3 <- lm(mvpa3.all ~ ., data = df3)
step <- stepAIC(t3, direction="both")
## Start: AIC=395.85
## mvpa3.all ~ age + sex + comorb + k.pain + k.symptom + k.adl +
## k.sport + k.qol + attitude + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## - k.sport 1 131 81682 393.93
## - comorb 1 265 81815 394.01
## - k.symptom 1 690 82240 394.27
## - attitude 1 1197 82747 394.58
## - subjective 1 2074 83624 395.10
## - perceived 1 2434 83984 395.32
## <none> 81550 395.85
## - k.pain 1 5012 86562 396.83
## - k.adl 1 6641 88192 397.76
## - sex 1 7132 88682 398.04
## - k.qol 1 7221 88772 398.09
## - age 1 30859 112409 409.89
## - bmi 1 34546 116096 411.51
##
## Step: AIC=393.93
## mvpa3.all ~ age + sex + comorb + k.pain + k.symptom + k.adl +
## k.qol + attitude + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## - comorb 1 250 81931 392.08
## - k.symptom 1 884 82566 392.47
## - attitude 1 1120 82801 392.61
## - subjective 1 2503 84185 393.44
## <none> 81682 393.93
## - perceived 1 3592 85273 394.08
## - k.pain 1 6171 87852 395.57
## + k.sport 1 131 81550 395.85
## - sex 1 7034 88716 396.06
## - k.qol 1 7120 88802 396.11
## - k.adl 1 7735 89417 396.45
## - age 1 31811 113492 408.37
## - bmi 1 36654 118336 410.46
##
## Step: AIC=392.08
## mvpa3.all ~ age + sex + k.pain + k.symptom + k.adl + k.qol +
## attitude + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## - k.symptom 1 885 82816 390.62
## - attitude 1 971 82902 390.67
## - subjective 1 2307 84238 391.47
## <none> 81931 392.08
## - perceived 1 3856 85787 392.38
## - k.pain 1 6401 88332 393.84
## + comorb 1 250 81682 393.93
## + k.sport 1 116 81815 394.01
## - sex 1 6868 88799 394.11
## - k.qol 1 7079 89010 394.22
## - k.adl 1 7917 89848 394.69
## - age 1 33274 115205 407.12
## - bmi 1 39939 121870 409.93
##
## Step: AIC=390.62
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + attitude + subjective +
## perceived + bmi
##
## Df Sum of Sq RSS AIC
## - attitude 1 717 83534 389.05
## - subjective 1 1981 84797 389.80
## - perceived 1 3234 86051 390.53
## <none> 82816 390.62
## - k.pain 1 5529 88346 391.85
## + k.symptom 1 885 81931 392.08
## - k.qol 1 6196 89012 392.23
## + k.sport 1 302 82515 392.44
## + comorb 1 251 82566 392.47
## - sex 1 6756 89572 392.54
## - k.adl 1 7513 90330 392.96
## - age 1 32446 115262 405.15
## - bmi 1 40309 123125 408.45
##
## Step: AIC=389.05
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + subjective +
## perceived + bmi
##
## Df Sum of Sq RSS AIC
## - subjective 1 2112 85646 388.30
## <none> 83534 389.05
## - perceived 1 4632 88165 389.75
## - k.pain 1 5512 89045 390.24
## - k.qol 1 5865 89399 390.44
## + attitude 1 717 82816 390.62
## + k.symptom 1 631 82902 390.67
## - sex 1 6717 90251 390.92
## + k.sport 1 174 83359 390.94
## + comorb 1 116 83417 390.98
## - k.adl 1 7361 90895 391.27
## - age 1 33512 117045 403.91
## - bmi 1 47463 130997 409.55
##
## Step: AIC=388.3
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + perceived +
## bmi
##
## Df Sum of Sq RSS AIC
## - perceived 1 3028 88674 388.03
## <none> 85646 388.30
## + subjective 1 2112 83534 389.05
## - sex 1 5535 91180 389.43
## - k.qol 1 5878 91524 389.62
## + attitude 1 848 84797 389.80
## - k.pain 1 6381 92027 389.89
## + k.sport 1 528 85117 389.99
## + k.symptom 1 344 85302 390.10
## + comorb 1 6 85640 390.29
## - k.adl 1 7340 92985 390.41
## - age 1 31407 117053 401.92
## - bmi 1 45455 131101 407.58
##
## Step: AIC=388.03
## mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + bmi
##
## Df Sum of Sq RSS AIC
## <none> 88674 388.03
## + perceived 1 3028 85646 388.30
## - sex 1 4560 93233 388.54
## + attitude 1 1973 86701 388.91
## - k.qol 1 5649 94323 389.12
## + k.sport 1 1479 87195 389.19
## - k.adl 1 6505 95179 389.57
## + subjective 1 508 88165 389.75
## + comorb 1 96 88577 389.98
## + k.symptom 1 20 88653 390.02
## - k.pain 1 8495 97169 390.61
## - age 1 31455 120128 401.21
## - bmi 1 43398 132072 405.95
step$anova # display results
Step | Df | Deviance | Resid. Df | Resid. Dev | AIC |
---|---|---|---|---|---|
NA | NA | 37 | 81550.21 | 395.8476 | |
- k.sport | 1 | 131.4061 | 38 | 81681.61 | 393.9281 |
- comorb | 1 | 249.7261 | 39 | 81931.34 | 392.0807 |
- k.symptom | 1 | 884.9722 | 40 | 82816.31 | 390.6179 |
- attitude | 1 | 717.1921 | 41 | 83533.50 | 389.0490 |
- subjective | 1 | 2112.1999 | 42 | 85645.70 | 388.2976 |
- perceived | 1 | 3027.8388 | 43 | 88673.54 | 388.0347 |
sm3 <- lm(mvpa3.all ~ age + sex + k.pain + k.adl + k.qol + bmi, data = df3)
summary(sm3)
##
## Call:
## lm(formula = mvpa3.all ~ age + sex + k.pain + k.adl + k.qol +
## bmi, data = df3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -70.750 -29.333 3.017 23.061 143.592
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 457.5734 88.6834 5.160 5.99e-06 ***
## age -3.1773 0.8135 -3.906 0.000327 ***
## sexMale 25.1008 16.8800 1.487 0.144307
## k.pain -1.4874 0.7328 -2.030 0.048607 *
## k.adl 1.7515 0.9862 1.776 0.082790 .
## k.qol -1.0564 0.6383 -1.655 0.105187
## bmi -5.8919 1.2843 -4.587 3.86e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 45.41 on 43 degrees of freedom
## Multiple R-squared: 0.5205, Adjusted R-squared: 0.4536
## F-statistic: 7.78 on 6 and 43 DF, p-value: 1.064e-05
lm.1.ef <- sjp.lm(sm3, type = "dots", y.offset = .4,
geom.colors = color, prnt.plot = FALSE,
axis.labels = c("a, b, c, d, e, f"))
lm.1.ef$plot +
theme(strip.text.x = element_text(size = 10),
plot.title = element_text(family = "OpenSans-CondensedBold", size = 12),
plot.subtitle=element_text(family="OpenSans-CondensedLightItalic"),
panel.grid.major.y=element_line(color="#2b2b2b", linetype="dotted", size=0.15),
plot.margin=unit(rep(0.5, 4), "cm")) +
ggtitle('Linear Model Estimates: METs 3+',
subtitle = "mvpa3+ ~ age + sex + KOOS.pain + KOOS.adl + KOOS.qol + BMI")
df4 <- df %>%
dplyr::select(age,
sex,
comorb,
k.pain,
k.symptom,
k.adl,
k.sport,
k.qol,
attitude,
subjective,
perceived,
bmi,
mvpa4.all)
t4 <- lm(mvpa4.all ~ ., data = df4)
step <- stepAIC(t4, direction="both")
## Start: AIC=352.43
## mvpa4.all ~ age + sex + comorb + k.pain + k.symptom + k.adl +
## k.sport + k.qol + attitude + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## - k.sport 1 53.4 34275 350.51
## - attitude 1 175.2 34397 350.68
## - k.symptom 1 580.3 34802 351.27
## - k.pain 1 1116.4 35338 352.03
## - comorb 1 1209.1 35431 352.17
## <none> 34222 352.43
## - k.qol 1 1413.4 35635 352.45
## - k.adl 1 1781.0 36003 352.97
## - perceived 1 2114.9 36337 353.43
## - sex 1 3685.0 37907 355.54
## - subjective 1 3970.8 38192 355.92
## - age 1 12110.0 46332 365.58
## - bmi 1 17713.2 51935 371.29
##
## Step: AIC=350.51
## mvpa4.all ~ age + sex + comorb + k.pain + k.symptom + k.adl +
## k.qol + attitude + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## - attitude 1 201.9 34477 348.80
## - k.symptom 1 530.1 34805 349.27
## - k.pain 1 1075.5 35351 350.05
## - comorb 1 1233.2 35508 350.27
## <none> 34275 350.51
## - k.qol 1 1587.3 35862 350.77
## - k.adl 1 1746.6 36022 350.99
## - perceived 1 2246.0 36521 351.68
## + k.sport 1 53.4 34222 352.43
## - subjective 1 3995.3 38270 354.02
## - sex 1 4034.3 38309 354.07
## - age 1 12092.8 46368 363.62
## - bmi 1 17987.0 52262 369.60
##
## Step: AIC=348.8
## mvpa4.all ~ age + sex + comorb + k.pain + k.symptom + k.adl +
## k.qol + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## - k.symptom 1 443.7 34921 347.44
## - k.pain 1 1039.0 35516 348.29
## - comorb 1 1097.3 35574 348.37
## <none> 34477 348.80
## - k.qol 1 1461.9 35939 348.88
## - k.adl 1 1704.7 36182 349.21
## + attitude 1 201.9 34275 350.51
## + k.sport 1 80.2 34397 350.68
## - perceived 1 2823.3 37300 350.74
## - sex 1 3936.3 38413 352.21
## - subjective 1 3992.9 38470 352.28
## - age 1 13030.0 47507 362.83
## - bmi 1 22884.1 57361 372.25
##
## Step: AIC=347.44
## mvpa4.all ~ age + sex + comorb + k.pain + k.adl + k.qol + subjective +
## perceived + bmi
##
## Df Sum of Sq RSS AIC
## - k.pain 1 720.7 35641 346.46
## - k.qol 1 1103.1 36024 347.00
## - comorb 1 1139.8 36060 347.05
## <none> 34921 347.44
## - k.adl 1 1572.9 36494 347.64
## - perceived 1 2422.4 37343 348.79
## + k.symptom 1 443.7 34477 348.80
## + attitude 1 115.6 34805 349.27
## + k.sport 1 11.5 34909 349.42
## - subjective 1 3716.0 38637 350.50
## - sex 1 3904.1 38825 350.74
## - age 1 12796.6 47717 361.05
## - bmi 1 22753.4 57674 370.53
##
## Step: AIC=346.46
## mvpa4.all ~ age + sex + comorb + k.adl + k.qol + subjective +
## perceived + bmi
##
## Df Sum of Sq RSS AIC
## - k.adl 1 855.0 36496 345.65
## - k.qol 1 1277.1 36918 346.22
## - comorb 1 1298.6 36940 346.25
## <none> 35641 346.46
## + k.pain 1 720.7 34921 347.44
## + k.symptom 1 125.4 35516 348.29
## + attitude 1 121.6 35520 348.29
## + k.sport 1 12.3 35629 348.44
## - perceived 1 3158.9 38800 348.71
## - subjective 1 4197.9 39839 350.03
## - sex 1 4330.1 39971 350.19
## - age 1 14245.4 49887 361.27
## - bmi 1 27998.5 63640 373.45
##
## Step: AIC=345.65
## mvpa4.all ~ age + sex + comorb + k.qol + subjective + perceived +
## bmi
##
## Df Sum of Sq RSS AIC
## - k.qol 1 429.4 36926 344.23
## - comorb 1 1326.2 37823 345.43
## <none> 36496 345.65
## + k.adl 1 855.0 35641 346.46
## - perceived 1 2456.3 38953 346.90
## + k.symptom 1 253.8 36243 347.30
## + attitude 1 96.9 36399 347.51
## + k.sport 1 45.3 36451 347.59
## + k.pain 1 2.8 36494 347.64
## - subjective 1 3882.4 40379 348.70
## - sex 1 4179.6 40676 349.07
## - age 1 18660.9 55157 364.30
## - bmi 1 28080.5 64577 372.18
##
## Step: AIC=344.23
## mvpa4.all ~ age + sex + comorb + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## - comorb 1 1317.1 38243 343.98
## <none> 36926 344.23
## + k.qol 1 429.4 36496 345.65
## + k.pain 1 224.6 36701 345.93
## + attitude 1 60.7 36865 346.15
## + k.sport 1 12.4 36913 346.22
## + k.adl 1 7.3 36918 346.22
## + k.symptom 1 0.1 36926 346.23
## - perceived 1 3885.0 40811 347.23
## - subjective 1 4315.2 41241 347.76
## - sex 1 4351.1 41277 347.80
## - age 1 18825.0 55751 362.83
## - bmi 1 27944.6 64870 370.41
##
## Step: AIC=343.98
## mvpa4.all ~ age + sex + subjective + perceived + bmi
##
## Df Sum of Sq RSS AIC
## <none> 38243 343.98
## + comorb 1 1317.1 36926 344.23
## + k.qol 1 420.2 37823 345.43
## + k.pain 1 265.1 37978 345.64
## + k.adl 1 10.1 38233 345.97
## + k.sport 1 9.9 38233 345.97
## + attitude 1 1.5 38241 345.98
## + k.symptom 1 0.4 38242 345.98
## - sex 1 3373.8 41617 346.21
## - subjective 1 3630.0 41873 346.52
## - perceived 1 4316.6 42559 347.33
## - age 1 17508.2 55751 360.83
## - bmi 1 27212.0 65455 368.85
step$anova # display results
Step | Df | Deviance | Resid. Df | Resid. Dev | AIC |
---|---|---|---|---|---|
NA | NA | 37 | 34221.61 | 352.4295 | |
- k.sport | 1 | 53.39329 | 38 | 34275.00 | 350.5074 |
- attitude | 1 | 201.92885 | 39 | 34476.93 | 348.8011 |
- k.symptom | 1 | 443.74241 | 40 | 34920.68 | 347.4406 |
- k.pain | 1 | 720.68802 | 41 | 35641.36 | 346.4620 |
- k.adl | 1 | 855.04468 | 42 | 36496.41 | 345.6473 |
- k.qol | 1 | 429.36101 | 43 | 36925.77 | 344.2321 |
- comorb | 1 | 1317.06350 | 44 | 38242.83 | 343.9844 |
sm4 <- lm(mvpa4.all ~ age + sex + subjective + perceived + bmi, data = df)
summary(sm4)
##
## Call:
## lm(formula = mvpa4.all ~ age + sex + subjective + perceived +
## bmi, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51.086 -16.338 -5.065 9.688 89.835
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 272.9046 52.4266 5.205 4.88e-06 ***
## age -2.2864 0.5094 -4.488 5.12e-05 ***
## sexMale 22.0673 11.2005 1.970 0.0551 .
## subjective 11.2010 5.4809 2.044 0.0470 *
## perceived -8.6078 3.8625 -2.229 0.0310 *
## bmi -4.4121 0.7885 -5.595 1.32e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.48 on 44 degrees of freedom
## Multiple R-squared: 0.4794, Adjusted R-squared: 0.4202
## F-statistic: 8.103 on 5 and 44 DF, p-value: 1.741e-05
lm.2.ef <- sjp.lm(sm4, type = "dots", y.offset = .4,
geom.colors = color, prnt.plot = FALSE,
axis.labels = c("a, b, c, d, e, f"))
lm.2.ef$plot +
theme(strip.text.x = element_text(size = 10),
plot.title = element_text(family = "OpenSans-CondensedBold", size = 12),
plot.subtitle=element_text(family="OpenSans-CondensedLightItalic"),
panel.grid.major.y=element_line(color="#2b2b2b", linetype="dotted", size=0.15),
plot.margin=unit(rep(0.5, 4), "cm")) +
ggtitle('Linear Model Estimates: METs 4+',
subtitle = "mvpa3+ ~ sex + SubjectiveNorm + age + BMI + PBC ")
tab <- sjt.lm(sm3,sm4, group.pred = FALSE, no.output=TRUE, CSS = css.table,
show.aic = TRUE,
show.ci = TRUE,
show.dev = TRUE,
show.re.var = TRUE,
depvar.labels = c("METs 3+", "METs 4+"),
show.header=TRUE
)$knitr
Predictors | Dependent Variables | METs 3+ | METs 4+ | |||||
B | CI | p | B | CI | p | |||
(Intercept) | 457.57 | 278.73 – 636.42 | <.001 | 272.90 | 167.25 – 378.56 | <.001 | ||
age | -3.18 | -4.82 – -1.54 | <.001 | -2.29 | -3.31 – -1.26 | <.001 | ||
sex (Male) | 25.10 | -8.94 – 59.14 | .144 | 22.07 | -0.51 – 44.64 | .055 | ||
k.pain | -1.49 | -2.97 – -0.01 | .049 | |||||
k.adl | 1.75 | -0.24 – 3.74 | .083 | |||||
k.qol | -1.06 | -2.34 – 0.23 | .105 | |||||
bmi | -5.89 | -8.48 – -3.30 | <.001 | -4.41 | -6.00 – -2.82 | <.001 | ||
subjective | 11.20 | 0.15 – 22.25 | .047 | |||||
perceived | -8.61 | -16.39 – -0.82 | .031 | |||||
Observations | 50 | 50 | ||||||
R2 / adj. R2 | .521 / .454 | .479 / .420 | ||||||
AIC | 531.929 | 487.878 | ||||||
Deviance | 88673.542 | 38242.833 |