Cálculo do Alpha Cronbach baseado no capítulo de análise fatorial do livro Field, A., Miles, J., & Field, Z. (2012). Discovering statistics with R. Sage Publications Ltd.
Análise de confiabilidade
Este tutorial é baseado em Field et al. (2012).
A análise de confiabilidade pode ser feita com a função alfa () no pacote psych
Preparação dos dados
dat <- read.table("raq.dat", header = TRUE)
Este conjunto de dados é um questionário com 23 itens com quatro subescalas medindo diferentes tipos de medo:
Subescala 1 (computerFear): itens 6, 7, 10, 13, 14, 15, 18
Subescala 2 (statsFear): itens 1, 3 (reverse-scored), 4, 5, 12, 16, 21
Subescala 3 (mathsFear): itens 8, 11, 17
Subescala 4 (peerFear): itens 2, 9, 19, 22
head(dat)
computerFear <- dat[, c(6, 7, 10, 13, 14, 15, 18)]
statsFear <- dat[, c(1, 3, 4, 5, 12, 16, 20, 21)]
mathsFear <- dat[, c(8, 11, 17)]
peerFear <- dat[, c(2, 9, 19, 22, 23)]
Precisamos indicar que Q3 é um reverse-scored
library(psych)
stat <- alpha(statsFear, keys = c(1, -1, 1, 1, 1, 1, 1, 1)) # Q03, que é o item 2 na subescala statsFear
comp <- alpha(computerFear)
math <- alpha(mathsFear)
peer <- alpha(peerFear)
vamos interpretar a dimensão computerFear
comp$total
comp$alpha.drop
comp$response.freq
1 2 3 4 5 miss
Q06 0.05678724 0.09801634 0.1338001 0.4383508 0.27304551 0
Q07 0.08518086 0.24231816 0.2578763 0.3403345 0.07429016 0
Q10 0.01555815 0.09646052 0.1816414 0.5659277 0.14041229 0
Q13 0.02800467 0.11746402 0.2547647 0.4753014 0.12446519 0
Q14 0.06884481 0.17619603 0.3788409 0.3146636 0.06145469 0
Q15 0.05834306 0.17775185 0.3026060 0.3943991 0.06690004 0
Q18 0.05717620 0.11629716 0.3084403 0.3741735 0.14391287 0
O que significam as estatísticas de resumo?
Raw_alpha: \(\alpha\) de Cronbach (valores ≥ 0,7 ou 0,8 indicam boa confiabilidade)
Std.alpha: isso deve ser semelhante ao raw_alpha (só precisamos do alfa em bruto)
Como interpretar ‘Confiabilidade se um item é descartado’?
Por exemplo, a primeira linha refere-se a Q06 e, se for descartada, a \(\alpha\) total torna-se 0.79, o que reflete uma pior confiabilidade, então queremos manter Q06
Demais dimensões
stat$total
stat$alpha.drop
stat$response.freq
1 2 3 4 5 miss
Q01 0.01594710 0.07273434 0.2858810 0.5204201 0.10501750 0
Q03 0.02956048 0.17425126 0.3415014 0.2613769 0.19331000 0
Q04 0.04706340 0.16997277 0.3593932 0.3691171 0.05445352 0
Q05 0.04045119 0.18475301 0.2901595 0.4259043 0.05873201 0
Q12 0.08673668 0.22909374 0.4640218 0.1971995 0.02294827 0
Q16 0.05562038 0.16413847 0.4196811 0.3251653 0.03539479 0
Q20 0.21820303 0.37028394 0.2473746 0.1458576 0.01828082 0
Q21 0.09295994 0.28704784 0.3364450 0.2648775 0.01866978 0
math$total
math$alpha.drop
math$response.freq
1 2 3 4 5 miss
Q08 0.02800467 0.05717620 0.1874757 0.5783742 0.14896927 0
Q11 0.02255932 0.06417736 0.2197588 0.5328666 0.16063788 0
Q17 0.02800467 0.09723843 0.2730455 0.5169195 0.08479191 0
peer$total
peer$alpha.drop
peer$response.freq
1 2 3 4 5 miss
Q02 0.007779074 0.03928433 0.08012447 0.3142746 0.55853753 0
Q09 0.082458187 0.28471412 0.22987165 0.2026449 0.20031116 0
Q19 0.023337223 0.14624660 0.21625827 0.3274990 0.28665889 0
Q22 0.045507585 0.25515364 0.34111241 0.2582653 0.09996110 0
Q23 0.124465189 0.42434850 0.27071179 0.1221315 0.05834306 0
O que aconteceria se ignorássemos que Q3 é um reverse-scored? WRONG!
library(psych)
stat <- alpha(statsFear, keys = c(1, -1, 1, 1, 1, 1, 1, 1)) # Q03, que é o item 2 na subescala statsFear
stat$total
stat$alpha.drop
LS0tDQp0aXRsZTogIkNhc2UgMSAtIEFscGhhIENyb25iYWNoIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyMjIEPDoWxjdWxvIGRvIEFscGhhIENyb25iYWNoIGJhc2VhZG8gbm8gY2Fww610dWxvIGRlIGFuw6FsaXNlIGZhdG9yaWFsIGRvIGxpdnJvIEZpZWxkLCBBLiwgTWlsZXMsIEouLCAmIEZpZWxkLCBaLiAoMjAxMikuIERpc2NvdmVyaW5nIHN0YXRpc3RpY3Mgd2l0aCBSLiBTYWdlIFB1YmxpY2F0aW9ucyBMdGQuDQoNCg0KIyMjIEFuw6FsaXNlIGRlIGNvbmZpYWJpbGlkYWRlDQoNCiMjI0VzdGUgdHV0b3JpYWwgw6kgYmFzZWFkbyBlbSBGaWVsZCBldCBhbC4gKDIwMTIpLg0KIyMjQSBhbsOhbGlzZSBkZSBjb25maWFiaWxpZGFkZSBwb2RlIHNlciBmZWl0YSBjb20gYSBmdW7Dp8OjbyBhbGZhICgpIG5vIHBhY290ZSAqcHN5Y2gqDQoNCiMjI1ByZXBhcmHDp8OjbyBkb3MgZGFkb3MNCg0KYGBge3J9DQpkYXQgPC0gcmVhZC50YWJsZSgicmFxLmRhdCIsIGhlYWRlciA9IFRSVUUpDQpgYGANCg0KIyMjIEVzdGUgY29uanVudG8gZGUgZGFkb3Mgw6kgdW0gcXVlc3Rpb27DoXJpbyBjb20gMjMgaXRlbnMgY29tIHF1YXRybyBzdWJlc2NhbGFzIG1lZGluZG8gZGlmZXJlbnRlcyB0aXBvcyBkZSBtZWRvOg0KDQojIyMgICAgU3ViZXNjYWxhIDEgKGNvbXB1dGVyRmVhcik6IGl0ZW5zIDYsIDcsIDEwLCAxMywgMTQsIDE1LCAxOA0KIyMjICAgIFN1YmVzY2FsYSAyIChzdGF0c0ZlYXIpOiBpdGVucyAxLCAzIChyZXZlcnNlLXNjb3JlZCksIDQsIDUsIDEyLCAxNiwgMjENCiMjIyAgICBTdWJlc2NhbGEgMyAobWF0aHNGZWFyKTogaXRlbnMgOCwgMTEsIDE3DQojIyMgICAgU3ViZXNjYWxhIDQgKHBlZXJGZWFyKTogaXRlbnMgMiwgOSwgMTksIDIyDQoNCg0KYGBge3J9DQpoZWFkKGRhdCkNCmNvbXB1dGVyRmVhciA8LSBkYXRbLCBjKDYsIDcsIDEwLCAxMywgMTQsIDE1LCAxOCldDQpzdGF0c0ZlYXIgPC0gZGF0WywgYygxLCAzLCA0LCA1LCAxMiwgMTYsIDIwLCAyMSldDQptYXRoc0ZlYXIgPC0gZGF0WywgYyg4LCAxMSwgMTcpXQ0KcGVlckZlYXIgPC0gZGF0WywgYygyLCA5LCAxOSwgMjIsIDIzKV0NCg0KYGBgDQoNCiMjIyBQcmVjaXNhbW9zIGluZGljYXIgcXVlIFEzIMOpIHVtIHJldmVyc2Utc2NvcmVkDQoNCmBgYHtyfQ0KbGlicmFyeShwc3ljaCkNCnN0YXQgPC0gYWxwaGEoc3RhdHNGZWFyLCBrZXlzID0gYygxLCAtMSwgMSwgMSwgMSwgMSwgMSwgMSkpICMgUTAzLCBxdWUgw6kgbyBpdGVtIDIgbmEgc3ViZXNjYWxhIHN0YXRzRmVhciANCmNvbXAgPC0gYWxwaGEoY29tcHV0ZXJGZWFyKQ0KbWF0aCA8LSBhbHBoYShtYXRoc0ZlYXIpDQpwZWVyIDwtIGFscGhhKHBlZXJGZWFyKQ0KYGBgDQoNCiMjIyB2YW1vcyBpbnRlcnByZXRhciBhIGRpbWVuc8OjbyAqY29tcHV0ZXJGZWFyKg0KDQpgYGB7cn0NCmNvbXAkdG90YWwNCmNvbXAkYWxwaGEuZHJvcA0KY29tcCRyZXNwb25zZS5mcmVxDQoNCmBgYA0KIyMjIE8gcXVlIHNpZ25pZmljYW0gYXMgZXN0YXTDrXN0aWNhcyBkZSByZXN1bW8/DQojIyMgUmF3X2FscGhhOiAkXGFscGhhJCBkZSBDcm9uYmFjaCAodmFsb3JlcyDiiaUgMCw3IG91IDAsOCBpbmRpY2FtIGJvYSBjb25maWFiaWxpZGFkZSkNCiMjIyBTdGQuYWxwaGE6IGlzc28gZGV2ZSBzZXIgc2VtZWxoYW50ZSBhbyByYXdfYWxwaGEgKHPDsyBwcmVjaXNhbW9zIGRvIGFsZmEgZW0gYnJ1dG8pDQoNCiMjIyBDb21vIGludGVycHJldGFyICdDb25maWFiaWxpZGFkZSBzZSB1bSBpdGVtIMOpIGRlc2NhcnRhZG8nPw0KIyMjIFBvciBleGVtcGxvLCBhIHByaW1laXJhIGxpbmhhIHJlZmVyZS1zZSBhIFEwNiBlLCBzZSBmb3IgZGVzY2FydGFkYSwgYSAkXGFscGhhJCB0b3RhbCB0b3JuYS1zZSAwLjc5LCBvIHF1ZSByZWZsZXRlIHVtYSBwaW9yIGNvbmZpYWJpbGlkYWRlLCBlbnTDo28gcXVlcmVtb3MgbWFudGVyIFEwNg0KDQoNCg0KIyMjIERlbWFpcyBkaW1lbnPDtWVzDQoNCmBgYHtyfQ0Kc3RhdCR0b3RhbA0Kc3RhdCRhbHBoYS5kcm9wDQpzdGF0JHJlc3BvbnNlLmZyZXENCg0KbWF0aCR0b3RhbA0KbWF0aCRhbHBoYS5kcm9wDQptYXRoJHJlc3BvbnNlLmZyZXENCg0KcGVlciR0b3RhbA0KcGVlciRhbHBoYS5kcm9wDQpwZWVyJHJlc3BvbnNlLmZyZXENCmBgYA0KDQojIyMgTyBxdWUgYWNvbnRlY2VyaWEgc2UgaWdub3LDoXNzZW1vcyBxdWUgUTMgw6kgdW0gcmV2ZXJzZS1zY29yZWQ/IFdST05HIQ0KDQpgYGB7cn0NCmxpYnJhcnkocHN5Y2gpDQpzdGF0IDwtIGFscGhhKHN0YXRzRmVhciwga2V5cyA9IGMoMSwgLTEsIDEsIDEsIDEsIDEsIDEsIDEpKSAjIFEwMywgcXVlIMOpIG8gaXRlbSAyIG5hIHN1YmVzY2FsYSBzdGF0c0ZlYXIgDQpzdGF0JHRvdGFsDQpzdGF0JGFscGhhLmRyb3ANCmBgYA0K