Este material apresenta uma breve aplicação de técnicas de Estatística descritiva em uma base de dados denominada como Tipo de SA:

Variáveis

  1. tipo_sa (Tipo de SA) 0-capital aberto 1-capital fechado
  2. tam (Tamanho) 0-pequena 1-média 2-grande
  3. patr_liq (patrimônio líquido)
  4. ativo_cir (ativo circulante)
  5. passivo_cir (passivo circulante)
  6. ativo_perm (ativo permanente)
  7. ativo_rlp (ativo realizável a longo prazo )
  8. passivo_elp (passivo exigível a longo prazo)
  9. lucro_liq_perc (lucro líquido percentual)
library(readxl)
dados <- read_excel("case1 tipo_sa.xlsx")
str(dados)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame':   100 obs. of  9 variables:
 $ tipo_sa       : num  0 1 1 1 0 1 0 1 0 1 ...
 $ tam           : num  1 1 2 1 3 2 1 2 3 2 ...
 $ patr_liq      : num  63685 89430 81300 79945 105690 ...
 $ ativo_cir     : num  30475 53000 35775 30475 60950 ...
 $ passivo_cir   : num  41400 43125 74175 31050 58650 ...
 $ ativo_perm    : num  79300 128100 125050 118950 68625 ...
 $ ativo_rlp     : num  5004 25020 43368 8340 7506 ...
 $ passivo_elp   : num  40098 17604 33252 26406 58680 ...
 $ lucro_liq_perc: num  0.0461 0.0758 0.095 0.0189 0.0245 0.027 0.0299 0.0013 -0.0108 -0.0129 ...
head(dados)

vamos recodificar algumas variáveis (obs: poderia ser feito no excel antes de importar os dados)

dados$tipo_sa <- factor(dados$tipo_sa, levels=c("0","1"), labels=c("capital aberto", "capital fechado"))
dados$tam <- factor(dados$tam, levels=c("1","2","3"), labels=c("Pequeno", "Médio", "Grande"))
head(dados)

Pronto! Agora podemos empregar algumas técnicas descritivas

Sumário

library(psych)
describe(dados[,3:9])  # apenas dados quantitativos
               vars   n      mean       sd    median   trimmed      mad      min
patr_liq          1 100  71245.90 15312.14  67750.00  71052.81 14062.46 33875.00
ativo_cir         2 100  35311.25 10213.83  34450.00  34830.94  7857.78 14575.00
passivo_cir       3 100  50249.25 12942.80  51750.00  50715.00 12787.42 12075.00
ativo_perm        4 100 106094.25 24257.34 109037.50 106654.69 28262.06 56425.00
ativo_rlp         5 100  19715.76  9971.79  17931.00  19202.85  9891.91  1668.00
passivo_elp       6 100  34376.70 12916.70  33252.00  34511.18 14499.83     0.00
lucro_liq_perc    7 100      0.02     0.03      0.02      0.02     0.02    -0.12
                    max    range  skew kurtosis      se
patr_liq       111110.0 77235.00  0.19    -0.03 1531.21
ativo_cir       60950.0 46375.00  0.48    -0.02 1021.38
passivo_cir     79350.0 67275.00 -0.35     0.02 1294.28
ativo_perm     152500.0 96075.00 -0.20    -0.94 2425.73
ativo_rlp       45036.0 43368.00  0.46    -0.59  997.18
passivo_elp     59658.0 59658.00 -0.08    -0.59 1291.67
lucro_liq_perc      0.1     0.21 -0.75     3.56    0.00
table(dados[,1:2]) # apenas dados qualitativos
                 tam
tipo_sa           Pequeno Médio Grande
  capital aberto       10    16     34
  capital fechado      24    16      0

Forma da distribuição

par(mfrow=c(3,3))
hist(dados$patr_liq) 
hist(dados$ativo_cir) 
hist(dados$passivo_cir)
hist(dados$ativo_perm)
hist(dados$ativo_rlp)
hist(dados$passivo_elp)
hist(dados$lucro_liq_perc) 
par(mfrow=c(1,1))

Box Plot > obserações discrepantes (olhar univariado)

par(mfrow=c(3,3))
boxplot(dados$patr_liq) 
boxplot(dados$ativo_cir) 
boxplot(dados$passivo_cir)
boxplot(dados$ativo_perm)
boxplot(dados$ativo_rlp)
boxplot(dados$passivo_elp)
boxplot(dados$lucro_liq_perc) 
par(mfrow=c(1,1))

par(mfrow=c(3,3))
boxplot(dados$patr_liq~dados$tipo_sa) 
boxplot(dados$ativo_cir~dados$tipo_sa) 
boxplot(dados$passivo_cir~dados$tipo_sa)
boxplot(dados$ativo_perm~dados$tipo_sa)
boxplot(dados$ativo_rlp~dados$tipo_sa)
boxplot(dados$passivo_elp~dados$tipo_sa)
boxplot(dados$lucro_liq_perc~dados$tipo_sa) 
par(mfrow=c(1,1))

par(mfrow=c(3,3))
boxplot(dados$patr_liq~dados$tam) 
boxplot(dados$ativo_cir~dados$tam) 
boxplot(dados$passivo_cir~dados$tam)
boxplot(dados$ativo_perm~dados$tam)
boxplot(dados$ativo_rlp~dados$tam)
boxplot(dados$passivo_elp~dados$tam)
boxplot(dados$lucro_liq_perc~dados$tam) 
par(mfrow=c(1,1))

obserações discrepantes (olhar multivarido)

outlier(dados[,3:9])
        1         2         3         4         5         6         7         8 
 4.032547  8.848578 13.359090  6.485754 12.796781  5.135195  7.809779  6.975575 
        9        10        11        12        13        14        15        16 
 6.871492  3.773659  3.799299  2.511399  5.163402  7.292381 10.228835  2.376188 
       17        18        19        20        21        22        23        24 
 8.748011  7.306523 11.576402  7.326450  2.928180 33.018911  3.959360  2.217106 
       25        26        27        28        29        30        31        32 
 4.640975  3.140521  1.956124  5.668116  4.418777  3.120336  1.261850  3.679069 
       33        34        35        36        37        38        39        40 
 5.565535  2.948255  6.650399  2.703993  5.386768  2.647563 10.169109  3.180719 
       41        42        43        44        45        46        47        48 
 4.045813 13.326535  8.879716  4.613969  6.203606  6.248428 12.107547  4.906422 
       49        50        51        52        53        54        55        56 
 9.710786 23.259049 12.692866  5.586708  6.030362  2.911568 32.422807  3.661792 
       57        58        59        60        61        62        63        64 
11.368709  4.343418  3.470123 13.712749 10.791706  6.026919  3.395965  3.830056 
       65        66        67        68        69        70        71        72 
11.922612  1.819079  3.632052  5.947582  4.584401  2.854809  7.854088  9.463426 
       73        74        75        76        77        78        79        80 
 3.479269  5.509818  5.624415  3.210325  6.126097  5.308337 12.874402  2.215576 
       81        82        83        84        85        86        87        88 
 4.869197 11.749392  5.974835  2.378841  2.278607  3.814355  2.527496  2.309430 
       89        90        91        92        93        94        95        96 
12.635408 12.065535 11.359848  4.776350 10.656086  2.783333  6.134458 15.814309 
       97        98        99       100 
 8.721706  3.170609  7.606874  3.720417 

# Correlation matrix
dadosq <- dados[,3:9]
pairs(dadosq, 
      pch = 21, 
      bg = c("red", "green3")[unclass(dados$tipo_sa)])

pairs(dadosq, 
      pch = 21, 
      bg = c("red", "green3", "blue")[unclass(dados$tam)])

library(ggplot2)

Attaching package: 㤼㸱ggplot2㤼㸲

The following objects are masked from 㤼㸱package:psych㤼㸲:

    %+%, alpha
library(ggcorrplot)
corr <- cor(dadosq)
corr <- round(corr, 2)
corr
               patr_liq ativo_cir passivo_cir ativo_perm ativo_rlp passivo_elp
patr_liq           1.00      0.79        0.30       0.20      0.27        0.05
ativo_cir          0.79      1.00        0.24       0.15      0.19        0.08
passivo_cir        0.30      0.24        1.00      -0.07      0.51        0.62
ativo_perm         0.20      0.15       -0.07       1.00      0.46       -0.48
ativo_rlp          0.27      0.19        0.51       0.46      1.00       -0.35
passivo_elp        0.05      0.08        0.62      -0.48     -0.35        1.00
lucro_liq_perc     0.13      0.11       -0.05       0.01      0.01       -0.07
               lucro_liq_perc
patr_liq                 0.13
ativo_cir                0.11
passivo_cir             -0.05
ativo_perm               0.01
ativo_rlp                0.01
passivo_elp             -0.07
lucro_liq_perc           1.00
library(corrplot)
corrplot(corr)

ggcorrplot(corr, hc.order = TRUE, 
           type = "lower", 
           lab = TRUE, 
           lab_size = 3, 
           method="circle", 
           colors = c("tomato2", "white", "springgreen3"), 
           title="Correlograma", 
           ggtheme=theme_bw)

LS0tDQp0aXRsZTogIkNhc2UgMSAtIFRWRU1JUiAtICB0aXBvIGRlIFNBIg0KYXV0aG9yOiAiTGVvbmksIFIuIEMuIFByb2Zlc3NvciBEci4iDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KKioqDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBGKQ0KYGBgDQoNCiMjIEVzdGUgbWF0ZXJpYWwgYXByZXNlbnRhIHVtYSBicmV2ZSBhcGxpY2HDp8OjbyBkZSB0w6ljbmljYXMgZGUgRXN0YXTDrXN0aWNhIGRlc2NyaXRpdmEgZW0gdW1hIGJhc2UgZGUgZGFkb3MgZGVub21pbmFkYSBjb21vICoqVGlwbyBkZSBTQSoqOg0KDQo+IFZhcmnDoXZlaXMNCg0KMS4gdGlwb19zYSAgKFRpcG8gZGUgU0EpICAwLWNhcGl0YWwgYWJlcnRvICAxLWNhcGl0YWwgZmVjaGFkbw0KMi4gdGFtIChUYW1hbmhvKSAwLXBlcXVlbmEgMS1tw6lkaWEgMi1ncmFuZGUNCjMuIHBhdHJfbGlxIChwYXRyaW3DtG5pbyBsw61xdWlkbykNCjQuIGF0aXZvX2NpciAoYXRpdm8gY2lyY3VsYW50ZSkNCjUuIHBhc3Npdm9fY2lyIChwYXNzaXZvIGNpcmN1bGFudGUpDQo2LiBhdGl2b19wZXJtIChhdGl2byBwZXJtYW5lbnRlKQ0KNy4gYXRpdm9fcmxwIChhdGl2byByZWFsaXrDoXZlbCBhIGxvbmdvIHByYXpvICkNCjguIHBhc3Npdm9fZWxwIChwYXNzaXZvIGV4aWfDrXZlbCBhIGxvbmdvIHByYXpvKQ0KOS4gbHVjcm9fbGlxX3BlcmMgKGx1Y3JvIGzDrXF1aWRvIHBlcmNlbnR1YWwpDQoNCmBgYHtyfQ0KbGlicmFyeShyZWFkeGwpDQpkYWRvcyA8LSByZWFkX2V4Y2VsKCJjYXNlMSB0aXBvX3NhLnhsc3giKQ0Kc3RyKGRhZG9zKQ0KaGVhZChkYWRvcykNCmBgYA0KDQojIyMgdmFtb3MgcmVjb2RpZmljYXIgYWxndW1hcyB2YXJpw6F2ZWlzIChvYnM6IHBvZGVyaWEgc2VyIGZlaXRvIG5vIGV4Y2VsIGFudGVzIGRlIGltcG9ydGFyIG9zIGRhZG9zKQ0KDQpgYGB7cn0NCmRhZG9zJHRpcG9fc2EgPC0gZmFjdG9yKGRhZG9zJHRpcG9fc2EsIGxldmVscz1jKCIwIiwiMSIpLCBsYWJlbHM9YygiY2FwaXRhbCBhYmVydG8iLCAiY2FwaXRhbCBmZWNoYWRvIikpDQoNCmRhZG9zJHRhbSA8LSBmYWN0b3IoZGFkb3MkdGFtLCBsZXZlbHM9YygiMSIsIjIiLCIzIiksIGxhYmVscz1jKCJQZXF1ZW5vIiwgIk3DqWRpbyIsICJHcmFuZGUiKSkNCg0KaGVhZChkYWRvcykNCmBgYA0KDQojIyBQcm9udG8hIEFnb3JhIHBvZGVtb3MgZW1wcmVnYXIgYWxndW1hcyB0w6ljbmljYXMgZGVzY3JpdGl2YXMNCg0KPiBTdW3DoXJpbw0KDQpgYGB7cn0NCmxpYnJhcnkocHN5Y2gpDQpkZXNjcmliZShkYWRvc1ssMzo5XSkgICMgYXBlbmFzIGRhZG9zIHF1YW50aXRhdGl2b3MNCnRhYmxlKGRhZG9zWywxOjJdKSAjIGFwZW5hcyBkYWRvcyBxdWFsaXRhdGl2b3MNCmBgYA0KDQo+IEZvcm1hIGRhIGRpc3RyaWJ1acOnw6NvDQoNCmBgYHtyLCBmaWcuaGVpZ2h0PTksIGZpZy53aWR0aD05fQ0KcGFyKG1mcm93PWMoMywzKSkNCmhpc3QoZGFkb3MkcGF0cl9saXEpIA0KaGlzdChkYWRvcyRhdGl2b19jaXIpIA0KaGlzdChkYWRvcyRwYXNzaXZvX2NpcikNCmhpc3QoZGFkb3MkYXRpdm9fcGVybSkNCmhpc3QoZGFkb3MkYXRpdm9fcmxwKQ0KaGlzdChkYWRvcyRwYXNzaXZvX2VscCkNCmhpc3QoZGFkb3MkbHVjcm9fbGlxX3BlcmMpIA0KcGFyKG1mcm93PWMoMSwxKSkNCmBgYA0KDQoNCj4gQm94IFBsb3QNCj4gPiBvYnNlcmHDp8O1ZXMgZGlzY3JlcGFudGVzIChvbGhhciB1bml2YXJpYWRvKQ0KDQpgYGB7ciwgZmlnLmhlaWdodD05LCBmaWcud2lkdGg9OX0NCnBhcihtZnJvdz1jKDMsMykpDQpib3hwbG90KGRhZG9zJHBhdHJfbGlxKSANCmJveHBsb3QoZGFkb3MkYXRpdm9fY2lyKSANCmJveHBsb3QoZGFkb3MkcGFzc2l2b19jaXIpDQpib3hwbG90KGRhZG9zJGF0aXZvX3Blcm0pDQpib3hwbG90KGRhZG9zJGF0aXZvX3JscCkNCmJveHBsb3QoZGFkb3MkcGFzc2l2b19lbHApDQpib3hwbG90KGRhZG9zJGx1Y3JvX2xpcV9wZXJjKSANCnBhcihtZnJvdz1jKDEsMSkpDQpgYGANCg0KYGBge3IsIGZpZy5oZWlnaHQ9OSwgZmlnLndpZHRoPTl9DQpwYXIobWZyb3c9YygzLDMpKQ0KYm94cGxvdChkYWRvcyRwYXRyX2xpcX5kYWRvcyR0aXBvX3NhKSANCmJveHBsb3QoZGFkb3MkYXRpdm9fY2lyfmRhZG9zJHRpcG9fc2EpIA0KYm94cGxvdChkYWRvcyRwYXNzaXZvX2Npcn5kYWRvcyR0aXBvX3NhKQ0KYm94cGxvdChkYWRvcyRhdGl2b19wZXJtfmRhZG9zJHRpcG9fc2EpDQpib3hwbG90KGRhZG9zJGF0aXZvX3JscH5kYWRvcyR0aXBvX3NhKQ0KYm94cGxvdChkYWRvcyRwYXNzaXZvX2VscH5kYWRvcyR0aXBvX3NhKQ0KYm94cGxvdChkYWRvcyRsdWNyb19saXFfcGVyY35kYWRvcyR0aXBvX3NhKSANCnBhcihtZnJvdz1jKDEsMSkpDQpgYGANCg0KDQoNCmBgYHtyLCBmaWcuaGVpZ2h0PTksIGZpZy53aWR0aD05fQ0KcGFyKG1mcm93PWMoMywzKSkNCmJveHBsb3QoZGFkb3MkcGF0cl9saXF+ZGFkb3MkdGFtKSANCmJveHBsb3QoZGFkb3MkYXRpdm9fY2lyfmRhZG9zJHRhbSkgDQpib3hwbG90KGRhZG9zJHBhc3Npdm9fY2lyfmRhZG9zJHRhbSkNCmJveHBsb3QoZGFkb3MkYXRpdm9fcGVybX5kYWRvcyR0YW0pDQpib3hwbG90KGRhZG9zJGF0aXZvX3JscH5kYWRvcyR0YW0pDQpib3hwbG90KGRhZG9zJHBhc3Npdm9fZWxwfmRhZG9zJHRhbSkNCmJveHBsb3QoZGFkb3MkbHVjcm9fbGlxX3BlcmN+ZGFkb3MkdGFtKSANCnBhcihtZnJvdz1jKDEsMSkpDQpgYGANCg0KPiBvYnNlcmHDp8O1ZXMgZGlzY3JlcGFudGVzIChvbGhhciBtdWx0aXZhcmlkbykNCg0KYGBge3J9DQpvdXRsaWVyKGRhZG9zWywzOjldKQ0KDQpgYGANCg0KDQpgYGB7ciwgZmlnLmhlaWdodD05LCBmaWcud2lkdGg9OX0NCiMgQ29ycmVsYXRpb24gbWF0cml4DQpkYWRvc3EgPC0gZGFkb3NbLDM6OV0NCg0KcGFpcnMoZGFkb3NxLCANCiAgICAgIHBjaCA9IDIxLCANCiAgICAgIGJnID0gYygicmVkIiwgImdyZWVuMyIpW3VuY2xhc3MoZGFkb3MkdGlwb19zYSldKQ0KDQoNCnBhaXJzKGRhZG9zcSwgDQogICAgICBwY2ggPSAyMSwgDQogICAgICBiZyA9IGMoInJlZCIsICJncmVlbjMiLCAiYmx1ZSIpW3VuY2xhc3MoZGFkb3MkdGFtKV0pDQpgYGANCmBgYHtyfQ0KDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGdnY29ycnBsb3QpDQoNCmNvcnIgPC0gY29yKGRhZG9zcSkNCmNvcnIgPC0gcm91bmQoY29yciwgMikNCmNvcnINCg0KDQpsaWJyYXJ5KGNvcnJwbG90KQ0KY29ycnBsb3QoY29ycikNCg0KZ2djb3JycGxvdChjb3JyLCBoYy5vcmRlciA9IFRSVUUsIA0KICAgICAgICAgICB0eXBlID0gImxvd2VyIiwgDQogICAgICAgICAgIGxhYiA9IFRSVUUsIA0KICAgICAgICAgICBsYWJfc2l6ZSA9IDMsIA0KICAgICAgICAgICBtZXRob2Q9ImNpcmNsZSIsIA0KICAgICAgICAgICBjb2xvcnMgPSBjKCJ0b21hdG8yIiwgIndoaXRlIiwgInNwcmluZ2dyZWVuMyIpLCANCiAgICAgICAgICAgdGl0bGU9IkNvcnJlbG9ncmFtYSIsIA0KICAgICAgICAgICBnZ3RoZW1lPXRoZW1lX2J3KQ0KYGBgDQoNCg0K