Visualização de dados - Datassaurus
library(ggplot2)
library(readr)
library(psych)
Attaching package: 㤼㸱psych㤼㸲
The following objects are masked from 㤼㸱package:ggplot2㤼㸲:
%+%, alpha
#base de dados
datassaurus <- read_csv("Datasaurus_data.csv")
Parsed with column specification:
cols(
x = col_double(),
y = col_double()
)
datassaurus
# correlação
cor(datassaurus)
x y
x 1.0000000 0.1085411
y 0.1085411 1.0000000
# Estatísticas Descritivas
describe(datassaurus)
vars n mean sd median trimmed mad min max range skew kurtosis se
x 1 142 57.30 39.42 53.72 53.94 16.16 22.31 479.49 457.18 8.63 89.75 3.31
y 2 142 47.83 26.94 46.03 46.90 30.79 2.95 99.49 96.54 0.25 -1.06 2.26
Existe algo de errado na Figura?
# Plot
g <- ggplot(datassaurus, aes(x, y))
g + geom_point() +
labs(title="Datassaurus",
subtitle="Vamos Visualizar os dados?",
x="X",
y="Y")

Qual é a observação discrepante?
outlier(datassaurus)
1 2 3 4 5 6
3.41842761 3.31857472 3.22450563 2.91585947 2.60441986 2.28084791
7 8 9 10 11 12
1.88091772 1.76414743 1.66976851 1.55916722 1.37577756 1.17051550
13 14 15 16 17 18
0.98704506 0.82391774 0.67725695 0.53644185 0.42071661 0.34692171
19 20 21 22 23 24
0.21969721 0.16394920 0.14229959 0.12281826 0.10350097 0.09497209
25 26 27 28 29 30
0.14112902 0.28560402 0.47679752 0.62440241 0.07668278 0.01067438
31 32 33 34 35 36
0.01740176 0.16186611 0.07520201 0.04021454 0.24629409 0.41597326
37 38 39 40 41 42
0.53791957 0.67042809 0.66015386 0.59300440 0.39219378 0.27465296
43 44 45 46 47 48
0.24477475 0.62170444 0.74707838 0.86892165 0.92260810 0.90926318
49 50 51 52 53 54
0.80737304 0.73971532 0.53628326 0.38936196 0.24046230 0.14814570
55 56 57 58 59 60
0.07197236 0.04408743 0.01936323 0.02273950 0.04043941 0.07357690
61 62 63 64 65 66
0.14588202 0.32308868 0.46981920 0.69615340 1.57072347 1.95702174
67 68 69 70 71 72
2.04472151 1.99779922 2.05213077 2.03986799 1.72917365 1.53257833
73 74 75 76 77 78
1.39257481 1.41189086 1.34745676 0.76541283 0.86350143 0.82292234
79 80 81 82 83 84
3.71491290 3.63182664 3.40903339 2.96037762 2.59991890 2.09972136
85 86 87 88 89 90
1.81458162 1.45545724 1.18330613 0.94666817 0.74145692 0.54300282
91 92 93 94 95 96
0.47817537 0.50149300 0.55348690 0.62764432 0.74837738 0.99317408
97 98 99 100 101 102
1.20133042 1.48682761 0.07144631 0.13206155 0.29580468 0.53337485
103 104 105 106 107 108
0.77274506 0.85245926 1.14089840 1.06286793 1.04816031 1.15776227
109 110 111 112 113 114
1.20726608 1.18519670 1.22364960 1.20351448 1.19946812 1.26769916
115 116 117 118 119 120
1.40949712 1.63609095 1.50470818 1.49780613 1.50010477 1.57964982
121 122 123 124 125 126
1.71450521 1.87214503 1.99707642 2.42227118 2.02693487 1.95023663
127 128 129 130 131 132
1.97037636 1.95471615 2.01165998 2.06352464 2.16406047 2.24992580
133 134 135 136 137 138
2.37459676 2.29384935 2.70768154 2.98844946 0.83985802 0.82676438
139 140 141 142
0.85142214 3.31224065 115.05822598 3.04282355

# excluir a linha 141º
datassaurus <- datassaurus[-141,]
g <- ggplot(datassaurus, aes(x, y))
g + geom_point() +
labs(title="Datassaurus",
subtitle="Vamos Visualizar os dados?",
x="X",
y="Y")

LS0tDQp0aXRsZTogIkPDk0RJR09TIMOaVEVJUyBOTyBSIC0gRGF0YXNzYXVydXMiDQphdXRob3I6ICJMZW9uaSwgUi4gQy4gUHJvZmVzc29yIERyLiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoqKioNCiANCiMgVmlzdWFsaXphw6fDo28gZGUgZGFkb3MgLSBEYXRhc3NhdXJ1cw0KDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkocmVhZHIpDQpsaWJyYXJ5KHBzeWNoKQ0KDQojYmFzZSBkZSBkYWRvcw0KZGF0YXNzYXVydXMgPC0gcmVhZF9jc3YoIkRhdGFzYXVydXNfZGF0YS5jc3YiKQ0KZGF0YXNzYXVydXMNCmBgYA0KDQpgYGB7cn0NCiMgY29ycmVsYcOnw6NvDQpjb3IoZGF0YXNzYXVydXMpDQojIEVzdGF0w61zdGljYXMgRGVzY3JpdGl2YXMNCmRlc2NyaWJlKGRhdGFzc2F1cnVzKQ0KYGBgDQoNCiMjIyBFeGlzdGUgYWxnbyBkZSBlcnJhZG8gbmEgRmlndXJhPw0KDQpgYGB7cn0NCiMgUGxvdA0KZyA8LSBnZ3Bsb3QoZGF0YXNzYXVydXMsIGFlcyh4LCB5KSkNCmcgKyBnZW9tX3BvaW50KCkgKyANCiAgICBsYWJzKHRpdGxlPSJEYXRhc3NhdXJ1cyIsIA0KICAgICAgICAgc3VidGl0bGU9IlZhbW9zIFZpc3VhbGl6YXIgb3MgZGFkb3M/IiwNCiAgICAgICAgIHg9IlgiLA0KICAgICAgICAgeT0iWSIpDQpgYGANCg0KIyMjIFF1YWwgw6kgYSBvYnNlcnZhw6fDo28gZGlzY3JlcGFudGU/DQoNCmBgYHtyLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD01fQ0Kb3V0bGllcihkYXRhc3NhdXJ1cykNCmBgYA0KDQpgYGB7cn0NCiMgZXhjbHVpciBhIGxpbmhhIDE0McK6DQpkYXRhc3NhdXJ1cyA8LSBkYXRhc3NhdXJ1c1stMTQxLF0NCg0KZyA8LSBnZ3Bsb3QoZGF0YXNzYXVydXMsIGFlcyh4LCB5KSkNCmcgKyBnZW9tX3BvaW50KCkgKyANCiAgICBsYWJzKHRpdGxlPSJEYXRhc3NhdXJ1cyIsIA0KICAgICAgICAgc3VidGl0bGU9IlZhbW9zIFZpc3VhbGl6YXIgb3MgZGFkb3M/IiwNCiAgICAgICAgIHg9IlgiLA0KICAgICAgICAgeT0iWSIpDQoNCg0KYGBgDQoNCg0KDQo=