Check correlations between conservatism and comfort in each of the conditions, one task at a time. A c before “comfort” means control condition; u means upwards anthro, b means benefits condition, d means downwards, r means risk. First is driverless car:

cor.test(a$poli2_1, a$ccomfort_1)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_1
## t = 2.1737, df = 98, p-value = 0.03213
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.01884674 0.39427963
## sample estimates:
##       cor 
## 0.2144709
cor.test(a$poli2_1, a$ucomfort_1)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_1
## t = 2.6745, df = 101, p-value = 0.008731
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.06697989 0.42932848
## sample estimates:
##      cor 
## 0.257171
cor.test(a$poli2_1, a$bcomfort_1)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_1
## t = 2.7958, df = 97, p-value = 0.006242
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.07997994 0.44642548
## sample estimates:
##       cor 
## 0.2730801
cor.test(a$poli2_1, a$dcomfort_1)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_1
## t = 0.66669, df = 93, p-value = 0.5066
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1344438  0.2668024
## sample estimates:
##        cor 
## 0.06896797
cor.test(a$poli2_1, a$rcomfort_1)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_1
## t = 1.5098, df = 93, p-value = 0.1345
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.04837722  0.34544807
## sample estimates:
##       cor 
## 0.1546739

Medical diagnoses

cor.test(a$poli2_1, a$ccomfort_2)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_2
## t = 1.9606, df = 98, p-value = 0.05276
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.002222778  0.376337197
## sample estimates:
##       cor 
## 0.1942802
cor.test(a$poli2_1, a$ucomfort_2)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_2
## t = 2.0626, df = 101, p-value = 0.04172
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.007821741 0.379790399
## sample estimates:
##       cor 
## 0.2010421
cor.test(a$poli2_1, a$bcomfort_2)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_2
## t = 2.328, df = 97, p-value = 0.02199
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03417437 0.40887834
## sample estimates:
##       cor 
## 0.2300343
cor.test(a$poli2_1, a$dcomfort_2)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_2
## t = 0.78713, df = 93, p-value = 0.4332
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1221959  0.2783302
## sample estimates:
##       cor 
## 0.0813506
cor.test(a$poli2_1, a$rcomfort_2)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_2
## t = 0.33295, df = 93, p-value = 0.7399
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1682076  0.2344180
## sample estimates:
##        cor 
## 0.03450522

So far the downward and risk conditions are the only ones that eliminate the correlation.

Next is surgery:

cor.test(a$poli2_1, a$ccomfort_3)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_3
## t = 2.0682, df = 98, p-value = 0.04125
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.008427225 0.385442180
## sample estimates:
##       cor 
## 0.2045068
cor.test(a$poli2_1, a$ucomfort_3)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_3
## t = 1.6451, df = 101, p-value = 0.1031
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03301131  0.34430601
## sample estimates:
##       cor 
## 0.1615454
cor.test(a$poli2_1, a$bcomfort_3)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_3
## t = 1.3249, df = 97, p-value = 0.1883
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.06582412  0.32225065
## sample estimates:
##       cor 
## 0.1333201
cor.test(a$poli2_1, a$dcomfort_3)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_3
## t = -0.18668, df = 92, p-value = 0.8523
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2212035  0.1838833
## sample estimates:
##         cor 
## -0.01945862
cor.test(a$poli2_1, a$rcomfort_3)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_3
## t = 0.8875, df = 93, p-value = 0.3771
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1119688  0.2878683
## sample estimates:
##        cor 
## 0.09164221

Dating advice - very different pattern.

cor.test(a$poli2_1, a$ccomfort_4)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_4
## t = -0.5473, df = 98, p-value = 0.5854
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2489209  0.1427643
## sample estimates:
##         cor 
## -0.05520178
cor.test(a$poli2_1, a$ucomfort_4)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_4
## t = 0.1207, df = 101, p-value = 0.9042
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1819387  0.2050569
## sample estimates:
##        cor 
## 0.01200882
cor.test(a$poli2_1, a$bcomfort_4)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_4
## t = 0.074482, df = 97, p-value = 0.9408
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1901334  0.2046685
## sample estimates:
##         cor 
## 0.007562252
cor.test(a$poli2_1, a$dcomfort_4)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_4
## t = 2.0484, df = 93, p-value = 0.04334
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.006504097 0.392866259
## sample estimates:
##       cor 
## 0.2077747
cor.test(a$poli2_1, a$rcomfort_4)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_4
## t = -0.58806, df = 93, p-value = 0.5579
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2592294  0.1424237
## sample estimates:
##         cor 
## -0.06086643

Movie suggestions

cor.test(a$poli2_1, a$ccomfort_5)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_5
## t = 0.65032, df = 98, p-value = 0.517
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1325741  0.2586390
## sample estimates:
##        cor 
## 0.06555095
cor.test(a$poli2_1, a$ucomfort_5)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_5
## t = 0.34294, df = 101, p-value = 0.7324
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1604802  0.2261358
## sample estimates:
##        cor 
## 0.03410362
cor.test(a$poli2_1, a$bcomfort_5)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_5
## t = -0.31041, df = 97, p-value = 0.7569
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2274990  0.1669481
## sample estimates:
##       cor 
## -0.031502
cor.test(a$poli2_1, a$dcomfort_5)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_5
## t = 1.2639, df = 93, p-value = 0.2094
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07352086  0.32303048
## sample estimates:
##       cor 
## 0.1299477
cor.test(a$poli2_1, a$rcomfort_5)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_5
## t = 3.2173, df = 93, p-value = 0.001781
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1227550 0.4869526
## sample estimates:
##       cor 
## 0.3164684

Personality analysis

cor.test(a$poli2_1, a$ccomfort_6)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_6
## t = -0.02354, df = 98, p-value = 0.9813
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1987032  0.1941309
## sample estimates:
##          cor 
## -0.002377921
cor.test(a$poli2_1, a$ucomfort_6)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_6
## t = 1.5061, df = 101, p-value = 0.1352
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.04665847  0.33220115
## sample estimates:
##       cor 
## 0.1482044
cor.test(a$poli2_1, a$bcomfort_6)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_6
## t = 0.97841, df = 97, p-value = 0.3303
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1005173  0.2905969
## sample estimates:
##       cor 
## 0.0988562
cor.test(a$poli2_1, a$dcomfort_6)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_6
## t = 1.077, df = 93, p-value = 0.2843
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.09262604  0.30569385
## sample estimates:
##       cor 
## 0.1109889
cor.test(a$poli2_1, a$rcomfort_6)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_6
## t = 0.33668, df = 92, p-value = 0.7371
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1687361  0.2360196
## sample estimates:
##        cor 
## 0.03508022

Job interview

cor.test(a$poli2_1, a$ccomfort_7)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_7
## t = -1.0993, df = 98, p-value = 0.2743
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.30027901  0.08795429
## sample estimates:
##        cor 
## -0.1103706
cor.test(a$poli2_1, a$ucomfort_7)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_7
## t = 0.62517, df = 101, p-value = 0.5333
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1330369  0.2525762
## sample estimates:
##        cor 
## 0.06208626
cor.test(a$poli2_1, a$bcomfort_7)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_7
## t = -0.44389, df = 97, p-value = 0.6581
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2403002  0.1537542
## sample estimates:
##         cor 
## -0.04502425
cor.test(a$poli2_1, a$dcomfort_7)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_7
## t = 0.20604, df = 93, p-value = 0.8372
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1809620  0.2219476
## sample estimates:
##        cor 
## 0.02136008
cor.test(a$poli2_1, a$rcomfort_7)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_7
## t = 0.184, df = 93, p-value = 0.8544
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1831712  0.2197741
## sample estimates:
##      cor 
## 0.019076

Job advice

cor.test(a$poli2_1, a$ccomfort_8)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ccomfort_8
## t = 0.32534, df = 98, p-value = 0.7456
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1646340  0.2277947
## sample estimates:
##        cor 
## 0.03284625
cor.test(a$poli2_1, a$ucomfort_8)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ucomfort_8
## t = -0.49642, df = 101, p-value = 0.6207
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2405636  0.1455788
## sample estimates:
##         cor 
## -0.04933577
cor.test(a$poli2_1, a$bcomfort_8)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bcomfort_8
## t = -0.067616, df = 97, p-value = 0.9462
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2040005  0.1908052
## sample estimates:
##          cor 
## -0.006865193
cor.test(a$poli2_1, a$dcomfort_8)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dcomfort_8
## t = -0.69812, df = 93, p-value = 0.4868
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2698194  0.1312501
## sample estimates:
##         cor 
## -0.07220284
cor.test(a$poli2_1, a$rcomfort_8)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rcomfort_8
## t = 0.99588, df = 93, p-value = 0.3219
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1009103  0.2980934
## sample estimates:
##       cor 
## 0.1027218

closeness to humans

cor.test(a$poli2_1, a$cclose)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$cclose
## t = 0.057874, df = 98, p-value = 0.954
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1907911  0.2020322
## sample estimates:
##         cor 
## 0.005846068
cor.test(a$poli2_1, a$uclose)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$uclose
## t = 1.6901, df = 102, p-value = 0.09406
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.02844179  0.34662077
## sample estimates:
##       cor 
## 0.1650505
cor.test(a$poli2_1, a$bclose)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bclose
## t = 0.15522, df = 97, p-value = 0.877
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1822204  0.2125091
## sample estimates:
##        cor 
## 0.01575831
cor.test(a$poli2_1, a$dclose)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dclose
## t = 0.91077, df = 93, p-value = 0.3648
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1095954  0.2900706
## sample estimates:
##        cor 
## 0.09402447
cor.test(a$poli2_1, a$rclose)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rclose
## t = 0.87484, df = 93, p-value = 0.3839
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1132596  0.2866689
## sample estimates:
##        cor 
## 0.09034568

risks

cor.test(a$poli2_1, a$crisk)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$crisk
## t = -1.6414, df = 98, p-value = 0.1039
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.34878846  0.03393161
## sample estimates:
##        cor 
## -0.1635767
cor.test(a$poli2_1, a$urisk)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$urisk
## t = -1.4649, df = 102, p-value = 0.146
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.32708719  0.05044158
## sample estimates:
##        cor 
## -0.1435411
cor.test(a$poli2_1, a$brisk)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$brisk
## t = -2.3259, df = 96, p-value = 0.02213
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.41057516 -0.03411344
## sample estimates:
##        cor 
## -0.2309708
cor.test(a$poli2_1, a$drisk)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$drisk
## t = -0.028228, df = 92, p-value = 0.9775
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2054374  0.1997932
## sample estimates:
##          cor 
## -0.002942946
cor.test(a$poli2_1, a$rrisk)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rrisk
## t = -3.1171, df = 93, p-value = 0.00243
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4793917 -0.1130284
## sample estimates:
##       cor 
## -0.307565

benefits

cor.test(a$poli2_1, a$cbenefits)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$cbenefits
## t = 1.1489, df = 97, p-value = 0.2534
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.08345509  0.30627202
## sample estimates:
##       cor 
## 0.1158656
cor.test(a$poli2_1, a$ubenefits)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ubenefits
## t = 2.2166, df = 102, p-value = 0.02887
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.02272326 0.39082600
## sample estimates:
##       cor 
## 0.2143733
cor.test(a$poli2_1, a$bbenefits)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bbenefits
## t = 1.9574, df = 97, p-value = 0.05318
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.00258014  0.37780426
## sample estimates:
##      cor 
## 0.194931
cor.test(a$poli2_1, a$dbenefits)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dbenefits
## t = 0.9406, df = 93, p-value = 0.3493
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1065527  0.2928877
## sample estimates:
##        cor 
## 0.09707495
cor.test(a$poli2_1, a$rbenefits)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rbenefits
## t = 3.3042, df = 93, p-value = 0.001353
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1311563 0.4934397
## sample estimates:
##       cor 
## 0.3241313

job threat

cor.test(a$poli2_1, a$cjobthreat)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$cjobthreat
## t = 0.2469, df = 98, p-value = 0.8055
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1723293  0.2202722
## sample estimates:
##        cor 
## 0.02493279
cor.test(a$poli2_1, a$ujobs)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ujobs
## t = 0.024245, df = 100, p-value = 0.9807
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1921410  0.1968066
## sample estimates:
##        cor 
## 0.00242448
cor.test(a$poli2_1, a$bjobs)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$bjobs
## t = 1.5944, df = 97, p-value = 0.1141
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.0388334  0.3462909
## sample estimates:
##       cor 
## 0.1598035
cor.test(a$poli2_1, a$djobs)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$djobs
## t = 0.43992, df = 92, p-value = 0.661
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1582697  0.2461485
## sample estimates:
##        cor 
## 0.04581654
cor.test(a$poli2_1, a$rjobs)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rjobs
## t = -1.0657, df = 91, p-value = 0.2894
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.30777081  0.09482979
## sample estimates:
##        cor 
## -0.1110232

lives threat

cor.test(a$poli2_1, a$clivesthreat)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$clivesthreat
## t = -1.5633, df = 98, p-value = 0.1212
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.34192985  0.04170792
## sample estimates:
##        cor 
## -0.1559881
cor.test(a$poli2_1, a$ulives)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$ulives
## t = -2.1484, df = 100, p-value = 0.0341
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.38864235 -0.01623084
## sample estimates:
##        cor 
## -0.2100427
cor.test(a$poli2_1, a$blives)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$blives
## t = -2.143, df = 97, p-value = 0.03461
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.39350957 -0.01586858
## sample estimates:
##        cor 
## -0.2126144
cor.test(a$poli2_1, a$dlives)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$dlives
## t = -1.648, df = 93, p-value = 0.1027
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.35784320  0.03425717
## sample estimates:
##        cor 
## -0.1684489
cor.test(a$poli2_1, a$rlives)
## 
##  Pearson's product-moment correlation
## 
## data:  a$poli2_1 and a$rlives
## t = -2.1722, df = 93, p-value = 0.03238
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.40341925 -0.01904308
## sample estimates:
##        cor 
## -0.2197427

Do any of the conditions have main effects? Sometimes, and mostly negative.

For car:

t.test(a$ccomfort_1, a$dcomfort_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_1 and a$dcomfort_1
## t = 1.8129, df = 199.46, p-value = 0.07135
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.02825918  0.67268618
## sample estimates:
## mean of x mean of y 
##  2.903846  2.581633
t.test(a$ccomfort_1, a$ucomfort_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_1 and a$ucomfort_1
## t = 1.1554, df = 206.73, p-value = 0.2493
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1540755  0.5903392
## sample estimates:
## mean of x mean of y 
##  2.903846  2.685714
t.test(a$ccomfort_1, a$bcomfort_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_1 and a$bcomfort_1
## t = 0.3354, df = 202.89, p-value = 0.7377
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3037575  0.4282815
## sample estimates:
## mean of x mean of y 
##  2.903846  2.841584
t.test(a$ccomfort_1, a$rcomfort_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_1 and a$rcomfort_1
## t = 3.2467, df = 200.9, p-value = 0.001368
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.2253274 0.9223649
## sample estimates:
## mean of x mean of y 
##  2.903846  2.330000

diagnosis

t.test(a$ccomfort_2, a$dcomfort_2)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_2 and a$dcomfort_2
## t = 1.4575, df = 197.62, p-value = 0.1466
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.08944476  0.59611666
## sample estimates:
## mean of x mean of y 
##  3.028846  2.775510
t.test(a$ccomfort_2, a$ucomfort_2)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_2 and a$ucomfort_2
## t = 2.9351, df = 206.26, p-value = 0.003712
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1564188 0.7965116
## sample estimates:
## mean of x mean of y 
##  3.028846  2.552381
t.test(a$ccomfort_2, a$bcomfort_2)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_2 and a$bcomfort_2
## t = 0.91768, df = 201.96, p-value = 0.3599
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1809816  0.4960996
## sample estimates:
## mean of x mean of y 
##  3.028846  2.871287
t.test(a$ccomfort_2, a$rcomfort_2)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_2 and a$rcomfort_2
## t = 0.58762, df = 201.72, p-value = 0.5574
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2328404  0.4305327
## sample estimates:
## mean of x mean of y 
##  3.028846  2.930000

surgery

t.test(a$ccomfort_3, a$dcomfort_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_3 and a$dcomfort_3
## t = 1.2199, df = 198.66, p-value = 0.2239
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1374930  0.5835676
## sample estimates:
## mean of x mean of y 
##  2.480769  2.257732
t.test(a$ccomfort_3, a$ucomfort_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_3 and a$ucomfort_3
## t = 1.2708, df = 200.82, p-value = 0.2053
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1181039  0.5463090
## sample estimates:
## mean of x mean of y 
##  2.480769  2.266667
t.test(a$ccomfort_3, a$bcomfort_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_3 and a$bcomfort_3
## t = 0.41641, df = 202.96, p-value = 0.6776
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2794900  0.4291472
## sample estimates:
## mean of x mean of y 
##  2.480769  2.405941
t.test(a$ccomfort_3, a$rcomfort_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_3 and a$rcomfort_3
## t = 1.8491, df = 200.57, p-value = 0.06591
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.0212910  0.6628295
## sample estimates:
## mean of x mean of y 
##  2.480769  2.160000

dating advice

t.test(a$ccomfort_4, a$dcomfort_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_4 and a$dcomfort_4
## t = 1.7758, df = 200, p-value = 0.07729
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.03291684  0.62907068
## sample estimates:
## mean of x mean of y 
##  2.798077  2.500000
t.test(a$ccomfort_4, a$ucomfort_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_4 and a$ucomfort_4
## t = 1.9048, df = 202.56, p-value = 0.05822
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.01063659  0.61631424
## sample estimates:
## mean of x mean of y 
##  2.798077  2.495238
t.test(a$ccomfort_4, a$bcomfort_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_4 and a$bcomfort_4
## t = 0.092694, df = 202.78, p-value = 0.9262
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3222885  0.3540860
## sample estimates:
## mean of x mean of y 
##  2.798077  2.782178
t.test(a$ccomfort_4, a$rcomfort_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_4 and a$rcomfort_4
## t = -0.18124, df = 200.43, p-value = 0.8564
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3792415  0.3153953
## sample estimates:
## mean of x mean of y 
##  2.798077  2.830000

movie suggestions

t.test(a$ccomfort_5, a$dcomfort_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_5 and a$dcomfort_5
## t = 1.4645, df = 175.5, p-value = 0.1448
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.06022865  0.40677496
## sample estimates:
## mean of x mean of y 
##  4.336538  4.163265
t.test(a$ccomfort_5, a$ucomfort_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_5 and a$ucomfort_5
## t = 2.0789, df = 199.71, p-value = 0.0389
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.01144167 0.43306382
## sample estimates:
## mean of x mean of y 
##  4.336538  4.114286
t.test(a$ccomfort_5, a$bcomfort_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_5 and a$bcomfort_5
## t = -2.0445, df = 202.02, p-value = 0.0422
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.369734895 -0.006693132
## sample estimates:
## mean of x mean of y 
##  4.336538  4.524752
t.test(a$ccomfort_5, a$rcomfort_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_5 and a$rcomfort_5
## t = 0.44541, df = 195.79, p-value = 0.6565
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1595226  0.2525996
## sample estimates:
## mean of x mean of y 
##  4.336538  4.290000

personality analysis

t.test(a$ccomfort_6, a$dcomfort_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_6 and a$dcomfort_6
## t = 0.55267, df = 199.9, p-value = 0.5811
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2474230  0.4401232
## sample estimates:
## mean of x mean of y 
##  3.259615  3.163265
t.test(a$ccomfort_6, a$ucomfort_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_6 and a$ucomfort_6
## t = 2.1545, df = 203.37, p-value = 0.03237
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.03011201 0.67959495
## sample estimates:
## mean of x mean of y 
##  3.259615  2.904762
t.test(a$ccomfort_6, a$bcomfort_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_6 and a$bcomfort_6
## t = -1.3603, df = 194.92, p-value = 0.1753
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.52827330  0.09700902
## sample estimates:
## mean of x mean of y 
##  3.259615  3.475248
t.test(a$ccomfort_6, a$rcomfort_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_6 and a$rcomfort_6
## t = 0.38765, df = 200.91, p-value = 0.6987
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2766542  0.4120466
## sample estimates:
## mean of x mean of y 
##  3.259615  3.191919

job interview

t.test(a$ccomfort_7, a$dcomfort_7)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_7 and a$dcomfort_7
## t = 1.9082, df = 199.79, p-value = 0.0578
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.01142876  0.69627963
## sample estimates:
## mean of x mean of y 
##  2.740385  2.397959
t.test(a$ccomfort_7, a$ucomfort_7)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_7 and a$ucomfort_7
## t = 2.7806, df = 202.01, p-value = 0.005938
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1350304 0.7933579
## sample estimates:
## mean of x mean of y 
##  2.740385  2.276190
t.test(a$ccomfort_7, a$bcomfort_7)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_7 and a$bcomfort_7
## t = 1.3883, df = 202.96, p-value = 0.1666
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1031014  0.5937716
## sample estimates:
## mean of x mean of y 
##  2.740385  2.495050
t.test(a$ccomfort_7, a$rcomfort_7)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_7 and a$rcomfort_7
## t = 1.0234, df = 201.96, p-value = 0.3074
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1671748  0.5279440
## sample estimates:
## mean of x mean of y 
##  2.740385  2.560000

job advice

t.test(a$ccomfort_8, a$dcomfort_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_8 and a$dcomfort_8
## t = 1.3201, df = 198.68, p-value = 0.1883
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1025118  0.5177394
## sample estimates:
## mean of x mean of y 
##  3.442308  3.234694
t.test(a$ccomfort_8, a$ucomfort_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_8 and a$ucomfort_8
## t = 1.3858, df = 205.51, p-value = 0.1673
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.08632726  0.49475217
## sample estimates:
## mean of x mean of y 
##  3.442308  3.238095
t.test(a$ccomfort_8, a$bcomfort_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_8 and a$bcomfort_8
## t = -0.75067, df = 202.73, p-value = 0.4537
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4067182  0.1824227
## sample estimates:
## mean of x mean of y 
##  3.442308  3.554455
t.test(a$ccomfort_8, a$rcomfort_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$ccomfort_8 and a$rcomfort_8
## t = 0.079273, df = 201.56, p-value = 0.9369
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2938299  0.3184452
## sample estimates:
## mean of x mean of y 
##  3.442308  3.430000

closeness to humans - they all backfired!

t.test(a$cclose, a$dclose)
## 
##  Welch Two Sample t-test
## 
## data:  a$cclose and a$dclose
## t = 3.0805, df = 198.69, p-value = 0.002359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1554227 0.7083920
## sample estimates:
## mean of x mean of y 
##  2.778846  2.346939
t.test(a$cclose, a$uclose)
## 
##  Welch Two Sample t-test
## 
## data:  a$cclose and a$uclose
## t = 3.459, df = 205.12, p-value = 0.0006594
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1929238 0.7043911
## sample estimates:
## mean of x mean of y 
##  2.778846  2.330189
t.test(a$cclose, a$bclose)
## 
##  Welch Two Sample t-test
## 
## data:  a$cclose and a$bclose
## t = 1.4474, df = 202.95, p-value = 0.1493
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.07052942  0.45990489
## sample estimates:
## mean of x mean of y 
##  2.778846  2.584158
t.test(a$cclose, a$rclose)
## 
##  Welch Two Sample t-test
## 
## data:  a$cclose and a$rclose
## t = 2.8386, df = 201.85, p-value = 0.004994
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1156877 0.6420046
## sample estimates:
## mean of x mean of y 
##  2.778846  2.400000

risk

t.test(a$crisk, a$drisk)
## 
##  Welch Two Sample t-test
## 
## data:  a$crisk and a$drisk
## t = -1.2017, df = 196.65, p-value = 0.2309
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4372204  0.1061340
## sample estimates:
## mean of x mean of y 
##  2.865385  3.030928
t.test(a$crisk, a$urisk)
## 
##  Welch Two Sample t-test
## 
## data:  a$crisk and a$urisk
## t = -1.518, df = 206.9, p-value = 0.1305
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.48293824  0.06276407
## sample estimates:
## mean of x mean of y 
##  2.865385  3.075472
t.test(a$crisk, a$brisk)
## 
##  Welch Two Sample t-test
## 
## data:  a$crisk and a$brisk
## t = 0.11963, df = 201.63, p-value = 0.9049
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2381929  0.2689621
## sample estimates:
## mean of x mean of y 
##  2.865385  2.850000
t.test(a$crisk, a$rrisk)
## 
##  Welch Two Sample t-test
## 
## data:  a$crisk and a$rrisk
## t = -0.76346, df = 200.59, p-value = 0.4461
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3748171  0.1655863
## sample estimates:
## mean of x mean of y 
##  2.865385  2.970000

benefits

t.test(a$cbenefits, a$dbenefits)
## 
##  Welch Two Sample t-test
## 
## data:  a$cbenefits and a$dbenefits
## t = 1.1699, df = 197.84, p-value = 0.2434
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.09421046  0.36902718
## sample estimates:
## mean of x mean of y 
##  4.106796  3.969388
t.test(a$cbenefits, a$ubenefits)
## 
##  Welch Two Sample t-test
## 
## data:  a$cbenefits and a$ubenefits
## t = 0.19326, df = 199.12, p-value = 0.847
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2014748  0.2452558
## sample estimates:
## mean of x mean of y 
##  4.106796  4.084906
t.test(a$cbenefits, a$bbenefits)
## 
##  Welch Two Sample t-test
## 
## data:  a$cbenefits and a$bbenefits
## t = -0.10787, df = 193.09, p-value = 0.9142
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2317102  0.2076787
## sample estimates:
## mean of x mean of y 
##  4.106796  4.118812
t.test(a$cbenefits, a$rbenefits)
## 
##  Welch Two Sample t-test
## 
## data:  a$cbenefits and a$rbenefits
## t = 0.96513, df = 191.22, p-value = 0.3357
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1114650  0.3250573
## sample estimates:
## mean of x mean of y 
##  4.106796  4.000000

job threat

t.test(a$cjobthreat, a$djobs)
## 
##  Welch Two Sample t-test
## 
## data:  a$cjobthreat and a$djobs
## t = 1.2383, df = 192.5, p-value = 0.2171
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1108214  0.4847310
## sample estimates:
## mean of x mean of y 
##  3.980769  3.793814
t.test(a$cjobthreat, a$ujobs)
## 
##  Welch Two Sample t-test
## 
## data:  a$cjobthreat and a$ujobs
## t = -0.36206, df = 203.93, p-value = 0.7177
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3098863  0.2137324
## sample estimates:
## mean of x mean of y 
##  3.980769  4.028846
t.test(a$cjobthreat, a$bjobs)
## 
##  Welch Two Sample t-test
## 
## data:  a$cjobthreat and a$bjobs
## t = 0.49384, df = 202.58, p-value = 0.622
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2091203  0.3488765
## sample estimates:
## mean of x mean of y 
##  3.980769  3.910891
t.test(a$cjobthreat, a$rjobs)
## 
##  Welch Two Sample t-test
## 
## data:  a$cjobthreat and a$rjobs
## t = 0.92044, df = 197.53, p-value = 0.3585
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1529004  0.4205613
## sample estimates:
## mean of x mean of y 
##  3.980769  3.846939

lives threat

t.test(a$clives, a$dlives)
## 
##  Welch Two Sample t-test
## 
## data:  a$clives and a$dlives
## t = 0.61026, df = 198.62, p-value = 0.5424
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.2184953  0.4143352
## sample estimates:
## mean of x mean of y 
##  3.067308  2.969388
t.test(a$clives, a$ulives)
## 
##  Welch Two Sample t-test
## 
## data:  a$clives and a$ulives
## t = 1.1656, df = 205.99, p-value = 0.2451
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.1263151  0.4916997
## sample estimates:
## mean of x mean of y 
##  3.067308  2.884615
t.test(a$clives, a$blives)
## 
##  Welch Two Sample t-test
## 
## data:  a$clives and a$blives
## t = 2.0625, df = 202.8, p-value = 0.04044
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.01428796 0.63517891
## sample estimates:
## mean of x mean of y 
##  3.067308  2.742574
t.test(a$clives, a$rlives)
## 
##  Welch Two Sample t-test
## 
## data:  a$clives and a$rlives
## t = 1.4245, df = 201.21, p-value = 0.1558
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.08733303  0.54194841
## sample estimates:
## mean of x mean of y 
##  3.067308  2.840000