Príprava dát

Potrebné R libraries

library(lavaan, quietly = TRUE, warn.conflicts = FALSE)
library(semPlot, quietly = TRUE, warn.conflicts = FALSE)
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)
library(psych, quietly = TRUE, warn.conflicts = FALSE)
library(ICC, quietly = TRUE, warn.conflicts = FALSE)
library(Amelia, quietly = TRUE, warn.conflicts = FALSE)
## Warning in as.POSIXlt.POSIXct(x, tz): unknown timezone 'zone/tz/2017c.1.0/
## zoneinfo/Europe/Bratislava'
library(BaylorEdPsych, quietly = TRUE, warn.conflicts = FALSE)

Načítanie dátového súboru

#rm(list = ls())
setwd(dir = "/Users/ivanropovik/OneDrive/MANUSCRIPTS/2017 HQL Validizacna studia")
full.data <- read.csv(file = "data_raw.csv", header = TRUE, sep = ";")
#View(full.data)

Selekcia premenných pre CFA nástroja

HLQ.collumns <- full.data %>% select(HL1:HL25, M1, M2, M3, M4)
delete.na <- function(HLQ.collumns, n=NULL) {
  HLQ.collumns[rowSums(is.na(HLQ.collumns)) <= n,]
}

Vizualizácia chýbajucich dát

data.na.rm <- delete.na(HLQ.collumns, n = 10)
missmap(data.na.rm, rank.order = TRUE)

Demografia

N

nrow(data.na.rm)
## [1] 291

Pohlavie

table(data.na.rm$M1) # 1 = chlapec, 2 = dievča
## 
##   1   2 
## 140 150
table(data.na.rm$M1[data.na.rm$M2 == 1])/length(data.na.rm$M2[data.na.rm$M2 == 1])*100 # Proporcia chlapcov v 7.ročníku
## 
##        1        2 
## 42.77457 56.64740
table(data.na.rm$M1[data.na.rm$M2 == 2])/length(data.na.rm$M2[data.na.rm$M2 == 2])*100 # Proporcia chlapcov v 9.ročníku
## 
##       1       2 
## 55.9322 44.0678

Vek v rokoch

data.na.rm$M4[data.na.rm$M4 == 1] <- 1997
data.na.rm$M4[data.na.rm$M4 == 2] <- 1998
data.na.rm$M4[data.na.rm$M4 == 3] <- 1999
data.na.rm$M4[data.na.rm$M4 == 4] <- 2000
data.na.rm$M4[data.na.rm$M4 == 5] <- 2001
data.na.rm$M4[data.na.rm$M4 == 6] <- 2002
data.na.rm$M4[data.na.rm$M4 == 7] <- 2003
data.na.rm$M4[data.na.rm$M4 == 8] <- 2004
data.na.rm$M4[data.na.rm$M4 == 9] <- 2005
zber <- 2016.4 #Máj 2016

Priemer

mean((zber - data.na.rm$M4)*12 - (12 - data.na.rm$M3), na.rm = TRUE)/12 #roky
## [1] 14.24856
mean((zber - data.na.rm$M4[data.na.rm$M2 == 1])*12 - (12 - data.na.rm$M3), na.rm = TRUE)/12 # Priemerný vek v 7. ročníku
## Warning in (zber - data.na.rm$M4[data.na.rm$M2 == 1]) * 12 - (12 -
## data.na.rm$M3): longer object length is not a multiple of shorter object
## length
## [1] 13.41638
mean((zber - data.na.rm$M4[data.na.rm$M2 == 2])*12 - (12 - data.na.rm$M3), na.rm = TRUE)/12 # Priemerný vek v 9. ročníku
## Warning in (zber - data.na.rm$M4[data.na.rm$M2 == 2]) * 12 - (12 -
## data.na.rm$M3): longer object length is not a multiple of shorter object
## length
## [1] 15.50109

SD

sd((zber - data.na.rm$M4)*12 - (12 - data.na.rm$M3), na.rm = TRUE)/12 #roky
## [1] 1.233906
sd((zber - data.na.rm$M4[data.na.rm$M2 == 1])*12 - (12 - data.na.rm$M3), na.rm = TRUE)/12 # SD veku v 7. ročníku
## Warning in (zber - data.na.rm$M4[data.na.rm$M2 == 1]) * 12 - (12 -
## data.na.rm$M3): longer object length is not a multiple of shorter object
## length
## [1] 0.5583029
sd((zber - data.na.rm$M4[data.na.rm$M2 == 2])*12 - (12 - data.na.rm$M3), na.rm = TRUE)/12 # SD veku v 9. ročníku
## Warning in (zber - data.na.rm$M4[data.na.rm$M2 == 2]) * 12 - (12 -
## data.na.rm$M3): longer object length is not a multiple of shorter object
## length
## [1] 0.5885805

Ročník

1 = 7. ročník; 2 = 9.ročník

table(data.na.rm$M2)
## 
##   1   2 
## 173 118

Priemerný počet žiakov v skupine

cluster.size <- nrow(data.na.rm)/21
cluster.size
## [1] 13.85714

Percento chýbajúcich dát

paste(round(sum(is.na(data.na.rm))/prod(dim(data.na.rm))*100, 3), "%", sep = "")
## [1] "0.391%"

Imputácia chýbajúcich dát

Bootstraped expected maximization

set.seed(123)
data_imput <- amelia(data.na.rm, ords = c("HL1", "HL2", "HL3", "HL4", "HL5",
                                          "HL6", "HL7", "HL8", "HL9", "HL10",
                                          "HL11", "HL12", "HL13", "HL14", "HL15",
                                          "HL16", "HL17", "HL18", "HL19", "HL20",
                                          "HL21", "HL22", "HL23", "HL24", "HL25"), m = 1)
## -- Imputation 1 --
## 
##   1  2  3  4
data <- as.data.frame(data_imput$imputations)
names(data) <- c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9",
                 "HL10", "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17",
                 "HL18", "HL19", "HL20", "HL21", "HL22", "HL23", "HL24", "HL25",
                 "Pohlavie", "Rocnik", "Narodenie_mesiac", "Narodenie_rok")

Finálne dáta

#View(data)

Deskriptívna analýza

Frekvenčné tabuľky

lapply(data[,c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9",
               "HL10", "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17",
               "HL18", "HL19", "HL20", "HL21", "HL22", "HL23", "HL24", "HL25")],
       function(x){table(x, useNA = "ifany")})
## $HL1
## x
##   1   2   3   4 
##   1  28 176  86 
## 
## $HL2
## x
##   1   2   3   4 
##   4  31 127 129 
## 
## $HL3
## x
##   1   2   3   4 
##  21  83 121  66 
## 
## $HL4
## x
##   1   2   3   4 
##  18  62 112  99 
## 
## $HL5
## x
##   1   2   3   4 
##   5  51 126 109 
## 
## $HL6
## x
##   1   2   3   4 
##   5  33  95 158 
## 
## $HL7
## x
##   1   2   3   4 
##  18  76 137  60 
## 
## $HL8
## x
##   1   2   3   4 
##   7  57 116 111 
## 
## $HL9
## x
##   1   2   3   4 
##   8  46 109 128 
## 
## $HL10
## x
##   1   2   3   4 
##   8  39 115 129 
## 
## $HL11
## x
##   1   2   3   4 
##   2  23 105 161 
## 
## $HL12
## x
##   1   2   3   4 
##  22  77 124  68 
## 
## $HL13
## x
##   1   2   3   4 
##  16  84 142  49 
## 
## $HL14
## x
##   1   2   3   4 
##   9  47 114 121 
## 
## $HL15
## x
##   1   2   3   4 
##   8  40 116 127 
## 
## $HL16
## x
##   1   2   3   4 
##  15  63 148  65 
## 
## $HL17
## x
##   1   2   3   4 
##   5  19  78 189 
## 
## $HL18
## x
##   1   2   3   4 
##   1  15  98 177 
## 
## $HL19
## x
##   1   2   3   4 
##  10  35 134 112 
## 
## $HL20
## x
##   1   2   3   4 
##  13  64 138  76 
## 
## $HL21
## x
##   1   2   3   4 
##   5  53 139  94 
## 
## $HL22
## x
##   1   2   3   4 
##   6  32  98 155 
## 
## $HL23
## x
##   1   2   3   4 
##   7  50 152  82 
## 
## $HL24
## x
##   1   2   3   4 
##  13  84 148  46 
## 
## $HL25
## x
##   1   2   3   4 
##  19  65 117  90

Deskriptívne štatistiky

describe(data[,1:25], na.rm = TRUE, skew = TRUE, ranges = TRUE, type = 2, trim = 0)
##      vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## HL1     1 291 3.19 0.61      3    3.19 0.00   1   4     3 -0.22    -0.03
## HL2     2 291 3.31 0.71      3    3.31 1.48   1   4     3 -0.76     0.14
## HL3     3 291 2.80 0.87      3    2.80 1.48   1   4     3 -0.25    -0.66
## HL4     4 291 3.00 0.90      3    3.00 1.48   1   4     3 -0.53    -0.57
## HL5     5 291 3.16 0.77      3    3.16 1.48   1   4     3 -0.52    -0.46
## HL6     6 291 3.40 0.76      4    3.40 0.00   1   4     3 -1.04     0.35
## HL7     7 291 2.82 0.83      3    2.82 1.48   1   4     3 -0.32    -0.42
## HL8     8 291 3.14 0.81      3    3.14 1.48   1   4     3 -0.53    -0.56
## HL9     9 291 3.23 0.81      3    3.23 1.48   1   4     3 -0.75    -0.22
## HL10   10 291 3.25 0.79      3    3.25 1.48   1   4     3 -0.82     0.07
## HL11   11 291 3.46 0.67      4    3.46 0.00   1   4     3 -1.00     0.39
## HL12   12 291 2.82 0.88      3    2.82 1.48   1   4     3 -0.31    -0.61
## HL13   13 291 2.77 0.79      3    2.77 1.48   1   4     3 -0.24    -0.35
## HL14   14 291 3.19 0.82      3    3.19 1.48   1   4     3 -0.71    -0.22
## HL15   15 291 3.24 0.79      3    3.24 1.48   1   4     3 -0.80     0.02
## HL16   16 291 2.90 0.80      3    2.90 0.00   1   4     3 -0.44    -0.16
## HL17   17 291 3.55 0.69      4    3.55 0.00   1   4     3 -1.55     2.04
## HL18   18 291 3.55 0.61      4    3.55 0.00   1   4     3 -1.11     0.65
## HL19   19 291 3.20 0.78      3    3.20 1.48   1   4     3 -0.80     0.33
## HL20   20 291 2.95 0.81      3    2.95 1.48   1   4     3 -0.42    -0.34
## HL21   21 291 3.11 0.75      3    3.11 1.48   1   4     3 -0.42    -0.40
## HL22   22 291 3.38 0.76      4    3.38 0.00   1   4     3 -1.05     0.45
## HL23   23 291 3.06 0.74      3    3.06 0.00   1   4     3 -0.46    -0.06
## HL24   24 291 2.78 0.76      3    2.78 0.00   1   4     3 -0.22    -0.26
## HL25   25 291 2.96 0.89      3    2.96 1.48   1   4     3 -0.47    -0.58
##        se
## HL1  0.04
## HL2  0.04
## HL3  0.05
## HL4  0.05
## HL5  0.05
## HL6  0.04
## HL7  0.05
## HL8  0.05
## HL9  0.05
## HL10 0.05
## HL11 0.04
## HL12 0.05
## HL13 0.05
## HL14 0.05
## HL15 0.05
## HL16 0.05
## HL17 0.04
## HL18 0.04
## HL19 0.05
## HL20 0.05
## HL21 0.04
## HL22 0.04
## HL23 0.04
## HL24 0.04
## HL25 0.05

Redukcia počtu kategórií v prípade nízkej frekvencie odpoveďovej kategórie

Pred výpočtom matice polychorických kovariancií však bolo nutné redukovať počet kategórií v prípade nízkej frekvencie odpoveďovej kategórie. Odhad polychorickej kovariančnej matice totiž predpokladá absenciu buniek xa a yb s nulovou frekvenciou (kde x, y sú ktorýmkoľvek párom premenných a a, b ktorýmkoľvek párom odpoveďových kategórií). Väčšina premenných vykazovala silne negatívne zošikmenie, pričom subjekty zriedka volili najmä odpoveďovú kategóriu [vôbec nie je pravda]. Vo veľkej väčšine prípadov postačovalo zlúčiť odpoveďovú kategóriu [vôbec nie je pravda] s kategóriou [nie tak celkom pravda], ak tá mala nižšiu celkovú frekvenciu ako 20.

data$HL1 <- ifelse(data$HL1 == 1, yes = 2, no = data$HL1)
data$HL2 <- ifelse(data$HL2 == 1, yes = 2, no = data$HL2)
data$HL4 <- ifelse(data$HL4 == 1, yes = 2, no = data$HL4)
data$HL5 <- ifelse(data$HL5 == 1, yes = 2, no = data$HL5)
data$HL6 <- ifelse(data$HL6 == 1, yes = 2, no = data$HL6)
data$HL8 <- ifelse(data$HL8 == 1, yes = 2, no = data$HL8)
data$HL9 <- ifelse(data$HL9 == 1, yes = 2, no = data$HL9)
data$HL10 <- ifelse(data$HL10 == 1, yes = 2, no = data$HL10)
data$HL11 <- ifelse(data$HL11 == 1, yes = 2, no = data$HL11)
data$HL13 <- ifelse(data$HL13 == 1, yes = 2, no = data$HL13)
data$HL14 <- ifelse(data$HL14 == 1, yes = 2, no = data$HL14)
data$HL15 <- ifelse(data$HL15 == 1, yes = 2, no = data$HL15)
data$HL17 <- ifelse(data$HL17 == 1, yes = 2, no = data$HL17)
data$HL18 <- ifelse(data$HL18 == 1, yes = 2, no = data$HL18)
data$HL18 <- ifelse(data$HL18 == 2, yes = 3, no = data$HL18)
data$HL19 <- ifelse(data$HL19 == 1, yes = 2, no = data$HL19)
data$HL20 <- ifelse(data$HL20 == 1, yes = 2, no = data$HL20)
data$HL21 <- ifelse(data$HL21 == 1, yes = 2, no = data$HL21)
data$HL22 <- ifelse(data$HL22 == 1, yes = 2, no = data$HL22)
data$HL23 <- ifelse(data$HL23 == 1, yes = 2, no = data$HL23)
data$HL24 <- ifelse(data$HL24 == 1, yes = 2, no = data$HL24)
data$HL25 <- ifelse(data$HL25 == 1, yes = 2, no = data$HL25)

Matica polychorických korelácií

polychoric.cor <- polychoric(data[1:25], correct = FALSE, smooth = TRUE,
                             global = FALSE, na.rm = TRUE)
round(polychoric.cor$rho, 2)
##       HL1  HL2  HL3  HL4  HL5  HL6  HL7  HL8  HL9 HL10 HL11 HL12 HL13 HL14
## HL1  1.00 0.39 0.28 0.16 0.23 0.30 0.30 0.39 0.34 0.29 0.27 0.31 0.37 0.24
## HL2  0.39 1.00 0.40 0.30 0.29 0.37 0.21 0.19 0.29 0.33 0.30 0.27 0.22 0.25
## HL3  0.28 0.40 1.00 0.46 0.40 0.21 0.27 0.43 0.29 0.42 0.25 0.33 0.49 0.18
## HL4  0.16 0.30 0.46 1.00 0.52 0.20 0.35 0.39 0.31 0.61 0.27 0.55 0.27 0.21
## HL5  0.23 0.29 0.40 0.52 1.00 0.24 0.31 0.38 0.39 0.47 0.30 0.43 0.31 0.32
## HL6  0.30 0.37 0.21 0.20 0.24 1.00 0.32 0.19 0.26 0.29 0.22 0.35 0.28 0.29
## HL7  0.30 0.21 0.27 0.35 0.31 0.32 1.00 0.37 0.36 0.40 0.18 0.43 0.29 0.10
## HL8  0.39 0.19 0.43 0.39 0.38 0.19 0.37 1.00 0.43 0.43 0.35 0.35 0.45 0.16
## HL9  0.34 0.29 0.29 0.31 0.39 0.26 0.36 0.43 1.00 0.50 0.31 0.33 0.30 0.24
## HL10 0.29 0.33 0.42 0.61 0.47 0.29 0.40 0.43 0.50 1.00 0.33 0.55 0.31 0.22
## HL11 0.27 0.30 0.25 0.27 0.30 0.22 0.18 0.35 0.31 0.33 1.00 0.31 0.37 0.34
## HL12 0.31 0.27 0.33 0.55 0.43 0.35 0.43 0.35 0.33 0.55 0.31 1.00 0.38 0.33
## HL13 0.37 0.22 0.49 0.27 0.31 0.28 0.29 0.45 0.30 0.31 0.37 0.38 1.00 0.30
## HL14 0.24 0.25 0.18 0.21 0.32 0.29 0.10 0.16 0.24 0.22 0.34 0.33 0.30 1.00
## HL15 0.37 0.30 0.41 0.33 0.33 0.32 0.24 0.43 0.29 0.33 0.42 0.30 0.44 0.24
## HL16 0.27 0.35 0.41 0.39 0.25 0.30 0.50 0.41 0.33 0.47 0.40 0.48 0.38 0.26
## HL17 0.27 0.36 0.35 0.33 0.34 0.44 0.32 0.28 0.29 0.34 0.33 0.33 0.27 0.21
## HL18 0.31 0.24 0.38 0.45 0.40 0.21 0.18 0.50 0.47 0.47 0.43 0.41 0.32 0.18
## HL19 0.22 0.36 0.24 0.32 0.25 0.23 0.31 0.28 0.31 0.36 0.48 0.33 0.33 0.20
## HL20 0.44 0.38 0.42 0.51 0.45 0.34 0.45 0.54 0.35 0.54 0.42 0.50 0.50 0.31
## HL21 0.33 0.31 0.43 0.45 0.56 0.30 0.30 0.44 0.36 0.45 0.33 0.42 0.33 0.21
## HL22 0.29 0.19 0.22 0.14 0.16 0.27 0.10 0.13 0.25 0.15 0.26 0.21 0.19 0.17
## HL23 0.27 0.30 0.40 0.41 0.47 0.26 0.37 0.40 0.53 0.48 0.44 0.34 0.37 0.13
## HL24 0.31 0.22 0.44 0.47 0.46 0.17 0.25 0.44 0.39 0.44 0.47 0.47 0.46 0.36
## HL25 0.21 0.26 0.32 0.28 0.29 0.23 0.16 0.21 0.22 0.29 0.22 0.43 0.37 0.61
##      HL15 HL16 HL17 HL18 HL19 HL20 HL21 HL22 HL23 HL24 HL25
## HL1  0.37 0.27 0.27 0.31 0.22 0.44 0.33 0.29 0.27 0.31 0.21
## HL2  0.30 0.35 0.36 0.24 0.36 0.38 0.31 0.19 0.30 0.22 0.26
## HL3  0.41 0.41 0.35 0.38 0.24 0.42 0.43 0.22 0.40 0.44 0.32
## HL4  0.33 0.39 0.33 0.45 0.32 0.51 0.45 0.14 0.41 0.47 0.28
## HL5  0.33 0.25 0.34 0.40 0.25 0.45 0.56 0.16 0.47 0.46 0.29
## HL6  0.32 0.30 0.44 0.21 0.23 0.34 0.30 0.27 0.26 0.17 0.23
## HL7  0.24 0.50 0.32 0.18 0.31 0.45 0.30 0.10 0.37 0.25 0.16
## HL8  0.43 0.41 0.28 0.50 0.28 0.54 0.44 0.13 0.40 0.44 0.21
## HL9  0.29 0.33 0.29 0.47 0.31 0.35 0.36 0.25 0.53 0.39 0.22
## HL10 0.33 0.47 0.34 0.47 0.36 0.54 0.45 0.15 0.48 0.44 0.29
## HL11 0.42 0.40 0.33 0.43 0.48 0.42 0.33 0.26 0.44 0.47 0.22
## HL12 0.30 0.48 0.33 0.41 0.33 0.50 0.42 0.21 0.34 0.47 0.43
## HL13 0.44 0.38 0.27 0.32 0.33 0.50 0.33 0.19 0.37 0.46 0.37
## HL14 0.24 0.26 0.21 0.18 0.20 0.31 0.21 0.17 0.13 0.36 0.61
## HL15 1.00 0.38 0.33 0.53 0.35 0.52 0.51 0.17 0.42 0.38 0.16
## HL16 0.38 1.00 0.45 0.40 0.34 0.48 0.38 0.21 0.41 0.39 0.28
## HL17 0.33 0.45 1.00 0.42 0.31 0.30 0.35 0.32 0.32 0.24 0.29
## HL18 0.53 0.40 0.42 1.00 0.40 0.51 0.48 0.16 0.43 0.40 0.40
## HL19 0.35 0.34 0.31 0.40 1.00 0.46 0.43 0.28 0.42 0.34 0.25
## HL20 0.52 0.48 0.30 0.51 0.46 1.00 0.50 0.27 0.53 0.55 0.34
## HL21 0.51 0.38 0.35 0.48 0.43 0.50 1.00 0.27 0.40 0.48 0.31
## HL22 0.17 0.21 0.32 0.16 0.28 0.27 0.27 1.00 0.38 0.32 0.27
## HL23 0.42 0.41 0.32 0.43 0.42 0.53 0.40 0.38 1.00 0.57 0.26
## HL24 0.38 0.39 0.24 0.40 0.34 0.55 0.48 0.32 0.57 1.00 0.42
## HL25 0.16 0.28 0.29 0.40 0.25 0.34 0.31 0.27 0.26 0.42 1.00

Priemerná korelácia

polychoric.cor.low <- polychoric.cor$rho[lower.tri(polychoric.cor$rho)]
mean(abs(polychoric.cor.low))
## [1] 0.340758

Výpočet polychorickej kovariančnej matice

SDs <- describe(data[1:25], na.rm = TRUE)$sd
polychoric.cov <- cor2cov(R = polychoric.cor$rho, sds = SDs)

5-faktorový model

Špecifikácia 5-faktorového modelu

model <- '
Teor_ved =~ HL1 + HL8 + HL14 + HL18 + HL25
Prakt_ved =~ HL2 + HL4 + HL6 + HL10 + HL17
Krit_mysl =~ HL7 + HL12 + HL16 + HL21 + HL24
Sebauved =~ HL5 + HL11 + HL15 + HL19 + HL22
Občianstvo =~ HL3 + HL9 + HL13 + HL20 + HL23
'

Estimácia 5-faktorového modelu

Podľa Muthén, 1984

Daný typ estimátora je (1) robustný voči porušeniam predpokladu normálneho rozloženia premenných (nerealistické u Likertových škál), (2) produkuje značne menšie skreslenie pri odhade parametrov a teste zhody modelu a dát pri chybne špecifikovaných modeloch, a (3) proporcia chýb I. radu pri posudzovaní korektne špecifikovaných modelov je u daného typu dát výrazne bližšia vopred stanovenej nominálnej hodnote α, ako je to napríklad v prípade metódy maximálnej vierohodnosti (Beauducel, Herzberg, 2009).

fitted.model <- cfa(model = model, data = data, meanstructure = TRUE, std.lv = TRUE, mimic = "Mplus",
                    estimator = "WLSMVS", test = "Satterthwaite", orthogonal = FALSE, bootstrap = 5000,
                    ordered = c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9", "HL10",
                                "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17", "HL18", "HL19",
                                "HL20", "HL21", "HL22", "HL23", "HL24", "HL25"))
## Warning in lav_samplestats_from_data(lavdata = lavdata, missing = lavoptions$missing, : lavaan WARNING: 5 bivariate tables have empty cells; to see them, use:
##                   lavInspect(fit, "zero.cell.tables")
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use inspect(fit,"cov.lv") to investigate.

Počet buniek HLa x HLb s nulovou frekvenciou je už zanedbateľný.

Analýza štatistickej sily

Pre test blízkej zhody (na základe RMSEA distribúcie). Štatistická sila pre detekciu chybného modelu (RMSEA > .08)

df <- fitted.model@test[[1]]$df
alfa <- .05
n <- nrow(data)
rmsea0 <- .05           # RMSEA za predpokladu H0
rmseaa <- .08           # RMSEA za predpokladu H1

ncp0 <- (n-1)*df*rmsea0**2 ;
ncpa <-(n-1)*df*rmseaa**2 ;
if(rmsea0 < rmseaa) {
  cval <- qchisq(1-alfa,df=df,ncp=ncp0)
  sila.rmsea <- 1 - pchisq(cval,df=df,ncp=ncpa)
} else {
  cval <- qchisq(alfa,df=df,ncp=ncp0)
  sila.rmsea <- pchisq(cval,df=df,ncp=ncpa)
}
rm(ncp0, ncpa, cval)
print(round(sila.rmsea,10))
## [1] 0.9999999

Kovariančná matica je non-positive definite, pravdepodobne z dôvodu, že viaceré z definovaných latentných premenných su kolineárne (de facto identické). Jedna z korelácií v rámci štrukturálneho modelu (korelácia medzi citizenship a slf_wr) je väčšia ako 1.

eigen(inspect(fitted.model, "cov.lv") )$values
## [1]  4.657176051  0.224744196  0.094689073  0.033357754 -0.009967075

Negatívna piata eigenvalue má ale relatívne nízku hodnotu, takže výsledky testu modelu sú interpretovateľné.

Test modelu, odhady voľných parametrov

Stačí si všímať “Robust” test, Latent variable, Covariances a R-square. Intercepts, Thresholds, Intercepts (…) môžte kľudne ignorovať.

summary(fitted.model, standardized = TRUE, rsquare = TRUE)
## lavaan (0.5-23.1097) converged normally after  35 iterations
## 
##   Number of observations                           291
## 
##   Estimator                                       DWLS      Robust
##   Minimum Function Test Statistic              370.444     219.259
##   Degrees of freedom                               265         100
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.690
##     for the mean and variance adjusted correction (WLSMV)
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Teor_ved =~                                                           
##     HL1               0.540    0.057    9.417    0.000    0.540    0.540
##     HL8               0.684    0.047   14.690    0.000    0.684    0.684
##     HL14              0.491    0.054    9.034    0.000    0.491    0.491
##     HL18              0.721    0.053   13.688    0.000    0.721    0.721
##     HL25              0.567    0.052   10.918    0.000    0.567    0.567
##   Prakt_ved =~                                                          
##     HL2               0.521    0.059    8.880    0.000    0.521    0.521
##     HL4               0.705    0.043   16.316    0.000    0.705    0.705
##     HL6               0.484    0.057    8.550    0.000    0.484    0.484
##     HL10              0.752    0.038   19.646    0.000    0.752    0.752
##     HL17              0.575    0.057   10.009    0.000    0.575    0.575
##   Krit_mysl =~                                                          
##     HL7               0.533    0.047   11.385    0.000    0.533    0.533
##     HL12              0.678    0.037   18.476    0.000    0.678    0.678
##     HL16              0.652    0.038   16.946    0.000    0.652    0.652
##     HL21              0.684    0.039   17.751    0.000    0.684    0.684
##     HL24              0.697    0.039   17.779    0.000    0.697    0.697
##   Sebauved =~                                                           
##     HL5               0.634    0.045   14.158    0.000    0.634    0.634
##     HL11              0.571    0.052   11.069    0.000    0.571    0.571
##     HL15              0.617    0.046   13.427    0.000    0.617    0.617
##     HL19              0.555    0.049   11.284    0.000    0.555    0.555
##     HL22              0.378    0.062    6.139    0.000    0.378    0.378
##   Občianstvo =~                                                         
##     HL3               0.613    0.045   13.674    0.000    0.613    0.613
##     HL9               0.587    0.048   12.272    0.000    0.587    0.587
##     HL13              0.603    0.045   13.419    0.000    0.603    0.603
##     HL20              0.774    0.034   22.881    0.000    0.774    0.774
##     HL23              0.681    0.040   16.912    0.000    0.681    0.681
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Teor_ved ~~                                                           
##     Prakt_ved         0.787    0.058   13.565    0.000    0.787    0.787
##     Krit_mysl         0.871    0.044   19.778    0.000    0.871    0.871
##     Sebauved          0.893    0.051   17.502    0.000    0.893    0.893
##     Občianstvo        0.908    0.037   24.435    0.000    0.908    0.908
##   Prakt_ved ~~                                                          
##     Krit_mysl         0.943    0.038   24.686    0.000    0.943    0.943
##     Sebauved          0.903    0.064   14.082    0.000    0.903    0.903
##     Občianstvo        0.897    0.045   20.079    0.000    0.897    0.897
##   Krit_mysl ~~                                                          
##     Sebauved          0.963    0.047   20.481    0.000    0.963    0.963
##     Občianstvo        0.959    0.030   31.704    0.000    0.959    0.959
##   Sebauved ~~                                                           
##     Občianstvo        1.009    0.044   22.901    0.000    1.009    1.009
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.000                               0.000    0.000
##    .HL8               0.000                               0.000    0.000
##    .HL14              0.000                               0.000    0.000
##    .HL18              0.000                               0.000    0.000
##    .HL25              0.000                               0.000    0.000
##    .HL2               0.000                               0.000    0.000
##    .HL4               0.000                               0.000    0.000
##    .HL6               0.000                               0.000    0.000
##    .HL10              0.000                               0.000    0.000
##    .HL17              0.000                               0.000    0.000
##    .HL7               0.000                               0.000    0.000
##    .HL12              0.000                               0.000    0.000
##    .HL16              0.000                               0.000    0.000
##    .HL21              0.000                               0.000    0.000
##    .HL24              0.000                               0.000    0.000
##    .HL5               0.000                               0.000    0.000
##    .HL11              0.000                               0.000    0.000
##    .HL15              0.000                               0.000    0.000
##    .HL19              0.000                               0.000    0.000
##    .HL22              0.000                               0.000    0.000
##    .HL3               0.000                               0.000    0.000
##    .HL9               0.000                               0.000    0.000
##    .HL13              0.000                               0.000    0.000
##    .HL20              0.000                               0.000    0.000
##    .HL23              0.000                               0.000    0.000
##     Teor_ved          0.000                               0.000    0.000
##     Prakt_ved         0.000                               0.000    0.000
##     Krit_mysl         0.000                               0.000    0.000
##     Sebauved          0.000                               0.000    0.000
##     Občianstvo        0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1|t1           -1.284    0.100  -12.774    0.000   -1.284   -1.284
##     HL1|t2            0.537    0.078    6.925    0.000    0.537    0.537
##     HL8|t1           -0.772    0.082   -9.401    0.000   -0.772   -0.772
##     HL8|t2            0.302    0.075    4.032    0.000    0.302    0.302
##     HL14|t1          -0.869    0.085  -10.266    0.000   -0.869   -0.869
##     HL14|t2           0.213    0.074    2.865    0.004    0.213    0.213
##     HL18|t1          -0.275    0.075   -3.682    0.000   -0.275   -0.275
##     HL25|t1          -0.557    0.078   -7.154    0.000   -0.557   -0.557
##     HL25|t2           0.498    0.077    6.465    0.000    0.498    0.498
##     HL2|t1           -1.174    0.095  -12.311    0.000   -1.174   -1.174
##     HL2|t2            0.143    0.074    1.931    0.054    0.143    0.143
##     HL4|t1           -0.598    0.079   -7.610    0.000   -0.598   -0.598
##     HL4|t2            0.412    0.076    5.426    0.000    0.412    0.412
##     HL6|t1           -1.124    0.093  -12.051    0.000   -1.124   -1.124
##     HL6|t2           -0.108    0.074   -1.463    0.144   -0.108   -0.108
##     HL10|t1          -0.988    0.088  -11.196    0.000   -0.988   -0.988
##     HL10|t2           0.143    0.074    1.931    0.054    0.143    0.143
##     HL17|t1          -1.389    0.106  -13.077    0.000   -1.389   -1.389
##     HL17|t2          -0.384    0.076   -5.078    0.000   -0.384   -0.384
##     HL7|t1           -1.539    0.116  -13.276    0.000   -1.539   -1.539
##     HL7|t2           -0.459    0.076   -6.004    0.000   -0.459   -0.459
##     HL7|t3            0.820    0.083    9.837    0.000    0.820    0.820
##     HL12|t1          -1.435    0.109  -13.168    0.000   -1.435   -1.435
##     HL12|t2          -0.412    0.076   -5.426    0.000   -0.412   -0.412
##     HL12|t3           0.727    0.081    8.960    0.000    0.727    0.727
##     HL16|t1          -1.630    0.123  -13.266    0.000   -1.630   -1.630
##     HL16|t2          -0.619    0.079   -7.837    0.000   -0.619   -0.619
##     HL16|t3           0.761    0.082    9.292    0.000    0.761    0.761
##     HL21|t1          -0.844    0.084  -10.053    0.000   -0.844   -0.844
##     HL21|t2           0.459    0.076    6.004    0.000    0.459    0.459
##     HL24|t1          -0.431    0.076   -5.658    0.000   -0.431   -0.431
##     HL24|t2           1.002    0.089   11.295    0.000    1.002    1.002
##     HL5|t1           -0.869    0.085  -10.266    0.000   -0.869   -0.869
##     HL5|t2            0.320    0.075    4.265    0.000    0.320    0.320
##     HL11|t1          -1.366    0.105  -13.024    0.000   -1.366   -1.366
##     HL11|t2          -0.134    0.074   -1.814    0.070   -0.134   -0.134
##     HL15|t1          -0.974    0.088  -11.095    0.000   -0.974   -0.974
##     HL15|t2           0.160    0.074    2.164    0.030    0.160    0.160
##     HL19|t1          -1.017    0.089  -11.394    0.000   -1.017   -1.017
##     HL19|t2           0.293    0.075    3.915    0.000    0.293    0.293
##     HL22|t1          -1.124    0.093  -12.051    0.000   -1.124   -1.124
##     HL22|t2          -0.082    0.074   -1.112    0.266   -0.082   -0.082
##     HL3|t1           -1.460    0.111  -13.205    0.000   -1.460   -1.460
##     HL3|t2           -0.365    0.075   -4.846    0.000   -0.365   -0.365
##     HL3|t3            0.749    0.082    9.181    0.000    0.749    0.749
##     HL9|t1           -0.894    0.085  -10.477    0.000   -0.894   -0.894
##     HL9|t2            0.151    0.074    2.047    0.041    0.151    0.151
##     HL13|t1          -0.403    0.076   -5.310    0.000   -0.403   -0.403
##     HL13|t2           0.961    0.087   10.994    0.000    0.961    0.961
##     HL20|t1          -0.629    0.079   -7.950    0.000   -0.629   -0.629
##     HL20|t2           0.640    0.079    8.063    0.000    0.640    0.640
##     HL23|t1          -0.856    0.084  -10.160    0.000   -0.856   -0.856
##     HL23|t2           0.578    0.078    7.382    0.000    0.578    0.578
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.708                               0.708    0.708
##    .HL8               0.532                               0.532    0.532
##    .HL14              0.759                               0.759    0.759
##    .HL18              0.480                               0.480    0.480
##    .HL25              0.678                               0.678    0.678
##    .HL2               0.728                               0.728    0.728
##    .HL4               0.503                               0.503    0.503
##    .HL6               0.766                               0.766    0.766
##    .HL10              0.435                               0.435    0.435
##    .HL17              0.669                               0.669    0.669
##    .HL7               0.716                               0.716    0.716
##    .HL12              0.541                               0.541    0.541
##    .HL16              0.575                               0.575    0.575
##    .HL21              0.532                               0.532    0.532
##    .HL24              0.514                               0.514    0.514
##    .HL5               0.598                               0.598    0.598
##    .HL11              0.673                               0.673    0.673
##    .HL15              0.620                               0.620    0.620
##    .HL19              0.692                               0.692    0.692
##    .HL22              0.857                               0.857    0.857
##    .HL3               0.624                               0.624    0.624
##    .HL9               0.655                               0.655    0.655
##    .HL13              0.636                               0.636    0.636
##    .HL20              0.401                               0.401    0.401
##    .HL23              0.536                               0.536    0.536
##     Teor_ved          1.000                               1.000    1.000
##     Prakt_ved         1.000                               1.000    1.000
##     Krit_mysl         1.000                               1.000    1.000
##     Sebauved          1.000                               1.000    1.000
##     Občianstvo        1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1               1.000                               1.000    1.000
##     HL8               1.000                               1.000    1.000
##     HL14              1.000                               1.000    1.000
##     HL18              1.000                               1.000    1.000
##     HL25              1.000                               1.000    1.000
##     HL2               1.000                               1.000    1.000
##     HL4               1.000                               1.000    1.000
##     HL6               1.000                               1.000    1.000
##     HL10              1.000                               1.000    1.000
##     HL17              1.000                               1.000    1.000
##     HL7               1.000                               1.000    1.000
##     HL12              1.000                               1.000    1.000
##     HL16              1.000                               1.000    1.000
##     HL21              1.000                               1.000    1.000
##     HL24              1.000                               1.000    1.000
##     HL5               1.000                               1.000    1.000
##     HL11              1.000                               1.000    1.000
##     HL15              1.000                               1.000    1.000
##     HL19              1.000                               1.000    1.000
##     HL22              1.000                               1.000    1.000
##     HL3               1.000                               1.000    1.000
##     HL9               1.000                               1.000    1.000
##     HL13              1.000                               1.000    1.000
##     HL20              1.000                               1.000    1.000
##     HL23              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     HL1               0.292
##     HL8               0.468
##     HL14              0.241
##     HL18              0.520
##     HL25              0.322
##     HL2               0.272
##     HL4               0.497
##     HL6               0.234
##     HL10              0.565
##     HL17              0.331
##     HL7               0.284
##     HL12              0.459
##     HL16              0.425
##     HL21              0.468
##     HL24              0.486
##     HL5               0.402
##     HL11              0.327
##     HL15              0.380
##     HL19              0.308
##     HL22              0.143
##     HL3               0.376
##     HL9               0.345
##     HL13              0.364
##     HL20              0.599
##     HL23              0.464

Priemerný faktorový náboj

mean(inspect(fitted.model,what="std")$lambda[inspect(fitted.model,what="std")$lambda > .0])
## [1] 0.6118905
table(inspect(fitted.model,what="std")$lambda[inspect(fitted.model,what="std")$lambda > .0] < .7)/25
## 
## FALSE  TRUE 
##  0.16  0.84

Indexy blízkej zhody modelu a dát

Treba si všímať .scaled indexy

fitMeasures(fitted.model)
##                          npar                          fmin 
##                        88.000                         0.637 
##                         chisq                            df 
##                       370.444                       265.000 
##                        pvalue                  chisq.scaled 
##                         0.000                       219.259 
##                     df.scaled                 pvalue.scaled 
##                       100.000                         0.000 
##          chisq.scaling.factor                baseline.chisq 
##                         1.690                     10075.119 
##                   baseline.df               baseline.pvalue 
##                       300.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled 
##                      1347.981                        40.000 
##        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                         0.000                         7.474 
##                           cfi                           tli 
##                         0.989                         0.988 
##                          nnfi                           rfi 
##                         0.988                         0.958 
##                           nfi                          pnfi 
##                         0.963                         0.851 
##                           ifi                           rni 
##                         0.989                         0.989 
##                    cfi.scaled                    tli.scaled 
##                         0.909                         0.964 
##                    cfi.robust                    tli.robust 
##                            NA                            NA 
##                   nnfi.scaled                   nnfi.robust 
##                         0.964                            NA 
##                    rfi.scaled                    nfi.scaled 
##                         0.935                         0.837 
##                    ifi.scaled                    rni.scaled 
##                         0.837                         0.988 
##                    rni.robust                         rmsea 
##                            NA                         0.037 
##                rmsea.ci.lower                rmsea.ci.upper 
##                         0.028                         0.046 
##                  rmsea.pvalue                  rmsea.scaled 
##                         0.994                         0.064 
##         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.055                         0.073 
##           rmsea.pvalue.scaled                  rmsea.robust 
##                         0.005                            NA 
##         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                            NA                            NA 
##           rmsea.pvalue.robust                           rmr 
##                            NA                         0.065 
##                    rmr_nomean                          srmr 
##                         0.067                         0.065 
##                  srmr_bentler           srmr_bentler_nomean 
##                         0.065                         0.067 
##                   srmr_bollen            srmr_bollen_nomean 
##                         0.065                         0.067 
##                    srmr_mplus             srmr_mplus_nomean 
##                         0.065                         0.067 
##                         cn_05                         cn_01 
##                       238.961                       252.667 
##                           gfi                          agfi 
##                         0.974                         0.965 
##                          pgfi                           mfi 
##                         0.731                         0.834

Diagram

semPaths(fitted.model, style = "mx", edge.label.cex = 0.7,
         sizeLat = 7, nCharNodes = 0, nDigits = 2, "Standardized",
         intercepts = FALSE, residuals = FALSE,
         what = "path", edge.label.position = .5,
         curvature = 4, layout = "circle",
         node.width = 1.1, color = "white", thresholds = FALSE)
## Warning in qgraph(Edgelist, labels = nLab, bidirectional = Bidir, directed
## = Directed, : The following arguments are not documented and likely not
## arguments of qgraph and thus ignored: loopRotation; residuals; residScale;
## residEdge; CircleEdgeEnd

Test modelu indikuje prítomnosť chybnej špecifikácie modelu. Popri indexoch blízkej zhody je preto potrebné analyzovať lokálne zdroje chybnej špecifikácie na základe matice reziduálnych korelácií

Matica reziduálnych korelácií

residuals <- residuals(fitted.model, type = "cor")$cor
residuals
##      HL1    HL8    HL14   HL18   HL25   HL2    HL4    HL6    HL10   HL17  
## HL1   0.000                                                               
## HL8   0.017  0.000                                                        
## HL14 -0.025 -0.177  0.000                                                 
## HL18 -0.076  0.007 -0.176  0.000                                          
## HL25 -0.097 -0.175  0.330 -0.012  0.000                                   
## HL2   0.169 -0.090  0.045 -0.059  0.026  0.000                            
## HL4  -0.137  0.011 -0.060  0.054 -0.031 -0.072  0.000                     
## HL6   0.090 -0.071  0.104 -0.063  0.009  0.119 -0.141  0.000              
## HL10 -0.030  0.030 -0.070  0.044 -0.050 -0.060  0.082 -0.071  0.000       
## HL17  0.023 -0.029 -0.014  0.093  0.030  0.061 -0.073  0.163 -0.089  0.000
## HL7   0.046  0.056 -0.127 -0.153 -0.108 -0.054  0.000  0.075  0.018  0.032
## HL12 -0.009 -0.050  0.041 -0.013  0.097 -0.061  0.103  0.041  0.074 -0.042
## HL16 -0.032  0.018 -0.020 -0.009 -0.040  0.032 -0.042  0.001  0.006  0.091
## HL21  0.007  0.036 -0.087  0.050 -0.028 -0.022 -0.009 -0.016 -0.040 -0.025
## HL24 -0.022  0.022  0.059 -0.035  0.081 -0.123  0.009 -0.151 -0.050 -0.137
## HL5  -0.079 -0.011  0.045 -0.009 -0.036 -0.007  0.120 -0.034  0.043  0.012
## HL11 -0.004 -0.001  0.089  0.059 -0.071  0.026 -0.093 -0.027 -0.054  0.034
## HL15  0.074  0.053 -0.026  0.133 -0.155  0.006 -0.059  0.053 -0.085  0.011
## HL19 -0.049 -0.059 -0.048  0.040 -0.027  0.100 -0.036 -0.015 -0.017  0.021
## HL22  0.112 -0.101  0.000 -0.079  0.078  0.015 -0.098  0.103 -0.105  0.124
## HL3  -0.019  0.052 -0.089 -0.025 -0.001  0.113  0.077 -0.060  0.009  0.031
## HL9   0.048  0.064 -0.026  0.083 -0.081  0.019 -0.064  0.004  0.103 -0.010
## HL13  0.070  0.077  0.028 -0.078  0.063 -0.061 -0.111  0.017 -0.100 -0.045
## HL20  0.057  0.056 -0.037  0.006 -0.055  0.018  0.025  0.003  0.013 -0.095
## HL23 -0.064 -0.025 -0.170 -0.016 -0.088 -0.023 -0.023 -0.031  0.024 -0.029
##      HL7    HL12   HL16   HL21   HL24   HL5    HL11   HL15   HL19   HL22  
## HL1                                                                       
## HL8                                                                       
## HL14                                                                      
## HL18                                                                      
## HL25                                                                      
## HL2                                                                       
## HL4                                                                       
## HL6                                                                       
## HL10                                                                      
## HL17                                                                      
## HL7   0.000                                                               
## HL12  0.067  0.000                                                        
## HL16  0.154  0.041  0.000                                                 
## HL21 -0.065 -0.044 -0.068  0.000                                          
## HL24 -0.121 -0.003 -0.061  0.004  0.000                                   
## HL5  -0.011  0.012 -0.146  0.141  0.037  0.000                            
## HL11 -0.117 -0.062  0.037 -0.044  0.084 -0.064  0.000                     
## HL15 -0.078 -0.106 -0.007  0.102 -0.031 -0.057  0.063  0.000              
## HL19  0.028 -0.031 -0.009  0.067 -0.035 -0.102  0.158  0.007  0.000       
## HL22 -0.092 -0.039 -0.022  0.021  0.068 -0.081  0.046 -0.062  0.070  0.000
## HL3  -0.047 -0.064  0.023  0.026  0.034  0.006 -0.107  0.029 -0.105 -0.017
## HL9   0.056 -0.054 -0.034 -0.025 -0.001  0.017 -0.024 -0.071 -0.020  0.021
## HL13 -0.017 -0.010  0.007 -0.069  0.059 -0.075  0.023  0.067 -0.007 -0.035
## HL20  0.055 -0.005  0.000 -0.003  0.030 -0.048 -0.023  0.036  0.022 -0.029
## HL23  0.021 -0.104 -0.016 -0.046  0.117  0.038  0.043 -0.003  0.035  0.117
##      HL3    HL9    HL13   HL20   HL23  
## HL1                                    
## HL8                                    
## HL14                                   
## HL18                                   
## HL25                                   
## HL2                                    
## HL4                                    
## HL6                                    
## HL10                                   
## HL17                                   
## HL7                                    
## HL12                                   
## HL16                                   
## HL21                                   
## HL24                                   
## HL5                                    
## HL11                                   
## HL15                                   
## HL19                                   
## HL22                                   
## HL3   0.000                            
## HL9  -0.070  0.000                     
## HL13  0.119 -0.051  0.000              
## HL20 -0.056 -0.102  0.030  0.000       
## HL23 -0.017  0.132 -0.040 -0.002  0.000

Priemer reziduálnych korelácií

mean(abs(residuals))
## [1] 0.05282712

Pre prehladnejšiu vizualizáciu, matica reziduí s vyznačenými reziduálnymi hodnotami > .1 (štandardizované z-reziduá je možné odhadnúť iba v prípade použitia estimátora z rodiny maximum likelihood. Arbitrárna hodnota .1 preto, lebo neumožní produkt dvoch nábojov > .3)

Počet premenných

p = 25

Ak máme v matici (p(p+1)/2 - p) = 300 elementov (bez diagonály), tak

(p*(p+1)/2 - p)*.05
## [1] 15

z nich môže byť signifikantných na hladine alfa = .05

HRUBÁ APROXIMÁCIA - približne tolko elementov môže byť > .1 Diag = diagonála, >.1 = reziduálna hodnota vyššia ako .1

ifelse(residuals == 0, "Diag", ifelse(residuals > .1, ">.1", "."))
##      HL1    HL8    HL14   HL18   HL25   HL2    HL4    HL6    HL10   HL17  
## HL1  "Diag" "."    "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL8  "."    "Diag" "."    "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "Diag" "."    ">.1"  "."    "."    ">.1"  "."    "."   
## HL18 "."    "."    "."    "Diag" "."    "."    "."    "."    "."    "."   
## HL25 "."    "."    ">.1"  "."    "Diag" "."    "."    "."    "."    "."   
## HL2  ">.1"  "."    "."    "."    "."    "Diag" "."    ">.1"  "."    "."   
## HL4  "."    "."    "."    "."    "."    "."    "Diag" "."    "."    "."   
## HL6  "."    "."    ">.1"  "."    "."    ">.1"  "."    "Diag" "."    ">.1" 
## HL10 "."    "."    "."    "."    "."    "."    "."    "."    "Diag" "."   
## HL17 "."    "."    "."    "."    "."    "."    "."    ">.1"  "."    "Diag"
## HL7  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL12 "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL16 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL21 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL24 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL5  "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL11 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL15 "."    "."    "."    ">.1"  "."    "."    "."    "."    "."    "."   
## HL19 "."    "."    "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL22 ">.1"  "."    "."    "."    "."    "."    "."    ">.1"  "."    ">.1" 
## HL3  "."    "."    "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL9  "."    "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
## HL13 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL23 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
##      HL7    HL12   HL16   HL21   HL24   HL5    HL11   HL15   HL19   HL22  
## HL1  "."    "."    "."    "."    "."    "."    "."    "."    "."    ">.1" 
## HL8  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL18 "."    "."    "."    "."    "."    "."    "."    ">.1"  "."    "."   
## HL25 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL2  "."    "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
## HL4  "."    ">.1"  "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL6  "."    "."    "."    "."    "."    "."    "."    "."    "."    ">.1" 
## HL10 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL17 "."    "."    "."    "."    "."    "."    "."    "."    "."    ">.1" 
## HL7  "Diag" "."    ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL12 "."    "Diag" "."    "."    "."    "."    "."    "."    "."    "."   
## HL16 ">.1"  "."    "Diag" "."    "."    "."    "."    "."    "."    "."   
## HL21 "."    "."    "."    "Diag" "."    ">.1"  "."    ">.1"  "."    "."   
## HL24 "."    "."    "."    "."    "Diag" "."    "."    "."    "."    "."   
## HL5  "."    "."    "."    ">.1"  "."    "Diag" "."    "."    "."    "."   
## HL11 "."    "."    "."    "."    "."    "."    "Diag" "."    ">.1"  "."   
## HL15 "."    "."    "."    ">.1"  "."    "."    "."    "Diag" "."    "."   
## HL19 "."    "."    "."    "."    "."    "."    ">.1"  "."    "Diag" "."   
## HL22 "."    "."    "."    "."    "."    "."    "."    "."    "."    "Diag"
## HL3  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL9  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL13 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL23 "."    "."    "."    "."    ">.1"  "."    "."    "."    "."    ">.1" 
##      HL3    HL9    HL13   HL20   HL23  
## HL1  "."    "."    "."    "."    "."   
## HL8  "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "."    "."   
## HL18 "."    "."    "."    "."    "."   
## HL25 "."    "."    "."    "."    "."   
## HL2  ">.1"  "."    "."    "."    "."   
## HL4  "."    "."    "."    "."    "."   
## HL6  "."    "."    "."    "."    "."   
## HL10 "."    ">.1"  "."    "."    "."   
## HL17 "."    "."    "."    "."    "."   
## HL7  "."    "."    "."    "."    "."   
## HL12 "."    "."    "."    "."    "."   
## HL16 "."    "."    "."    "."    "."   
## HL21 "."    "."    "."    "."    "."   
## HL24 "."    "."    "."    "."    ">.1" 
## HL5  "."    "."    "."    "."    "."   
## HL11 "."    "."    "."    "."    "."   
## HL15 "."    "."    "."    "."    "."   
## HL19 "."    "."    "."    "."    "."   
## HL22 "."    "."    "."    "."    ">.1" 
## HL3  "Diag" "."    ">.1"  "."    "."   
## HL9  "."    "Diag" "."    "."    ">.1" 
## HL13 ">.1"  "."    "Diag" "."    "."   
## HL20 "."    "."    "."    "Diag" "."   
## HL23 "."    ">.1"  "."    "."    "Diag"

Odhad reliability

rel.HLQ.collumns <- full.data %>% select(HL1:HL25,RHL1:RHL25, ID3)
delete.na <- function(rel.HLQ.collumns, n=NULL) {
  rel.HLQ.collumns[rowSums(is.na(rel.HLQ.collumns)) <= n,]
}
rel.HLQ.na.rm <- delete.na(rel.HLQ.collumns, n = 10)

Odhad internej konzistencie - McDonaldova Omega

round(omega(rel.HLQ.na.rm[,c("HL1", "HL8", "HL14", "HL18", "HL25")], poly = TRUE, plot = FALSE)$omega.tot, 2) # pre theor_know
## 10 cells were adjusted for 0 values using the correction for continuity. Examine your data carefully.
## Loading required namespace: GPArotation
## [1] 0.79
round(omega(rel.HLQ.na.rm[,c("HL2", "HL4", "HL6", "HL10", "HL17")], poly = TRUE, plot = FALSE)$omega.tot, 2) # pre prac_know
## 10 cells were adjusted for 0 values using the correction for continuity. Examine your data carefully.
## [1] 0.79
round(omega(rel.HLQ.na.rm[,c("HL7", "HL12", "HL16", "HL21", "HL24")], poly = TRUE, plot = FALSE)$omega.tot, 2) # pre crit_think
## 10 cells were adjusted for 0 values using the correction for continuity. Examine your data carefully.
## [1] 0.81
round(omega(rel.HLQ.na.rm[,c("HL5", "HL11", "HL15", "HL19", "HL22")], poly = TRUE, plot = FALSE)$omega.tot, 2) # pre self_aware
## 10 cells were adjusted for 0 values using the correction for continuity. Examine your data carefully.
## [1] 0.77
round(omega(rel.HLQ.na.rm[,c("HL3", "HL9", "HL13", "HL20", "HL23")], poly = TRUE, plot = FALSE)$omega.tot, 2) # pre citizenship
## 10 cells were adjusted for 0 values using the correction for continuity. Examine your data carefully.
## [1] 0.85

Odhad stability v čase

Výpočet sumárneho skóre každej z 5 dimenzií HL

rel.HLQ.na.rm$theor_know <- rowMeans(rel.HLQ.na.rm[,c("HL1", "HL8", "HL14", "HL18", "HL25")], na.rm = TRUE)
rel.HLQ.na.rm$prac_know <- rowMeans(rel.HLQ.na.rm[,c("HL2", "HL4", "HL6", "HL10", "HL17")], na.rm = TRUE)
rel.HLQ.na.rm$crit_think <- rowMeans(rel.HLQ.na.rm[,c("HL7", "HL12", "HL16", "HL21", "HL24")], na.rm = TRUE)
rel.HLQ.na.rm$self_aware <- rowMeans(rel.HLQ.na.rm[,c("HL5", "HL11", "HL15", "HL19", "HL22")], na.rm = TRUE)
rel.HLQ.na.rm$citizenship <- rowMeans(rel.HLQ.na.rm[,c("HL3", "HL9", "HL13", "HL20", "HL23")], na.rm = TRUE)

Výpočet sumárneho skóre každej z 5 dimenzií HL - RETEST

rel.HLQ.na.rm$Rtheor_know <- rowMeans(rel.HLQ.na.rm[,c("RHL1", "RHL8", "RHL14", "RHL18", "RHL25")], na.rm = TRUE)
rel.HLQ.na.rm$Rprac_know <- rowMeans(rel.HLQ.na.rm[,c("RHL2", "RHL4", "RHL6", "RHL10", "RHL17")], na.rm = TRUE)
rel.HLQ.na.rm$Rcrit_think <- rowMeans(rel.HLQ.na.rm[,c("RHL7", "RHL12", "RHL16", "RHL21", "RHL24")], na.rm = TRUE)
rel.HLQ.na.rm$Rself_aware <- rowMeans(rel.HLQ.na.rm[,c("RHL5", "RHL11", "RHL15", "RHL19", "RHL22")], na.rm = TRUE)
rel.HLQ.na.rm$Rcitizenship <- rowMeans(rel.HLQ.na.rm[,c("RHL3", "RHL9", "RHL13", "RHL20", "RHL23")], na.rm = TRUE)

Test-retest korelácia

round(with(rel.HLQ.na.rm, cor.test(theor_know, Rtheor_know))$estimate, 2) # pre theor_know
##  cor 
## 0.66
round(with(rel.HLQ.na.rm, cor.test(prac_know, Rprac_know))$estimate, 2) # pre prac_know
##  cor 
## 0.66
round(with(rel.HLQ.na.rm, cor.test(crit_think, Rcrit_think))$estimate, 2) # pre crit_think
##  cor 
## 0.64
round(with(rel.HLQ.na.rm, cor.test(self_aware, Rself_aware))$estimate, 2) # pre self_aware
##  cor 
## 0.65
round(with(rel.HLQ.na.rm, cor.test(citizenship, Rcitizenship))$estimate, 2) # pre citizenship
##  cor 
## 0.67

Intra-class korelácie pre 5 dimenzií HL

Overenie prítomnosti hierarchickej štruktúry v dátach, ktorá mohla vznikúť použitým spôsobom vzorkovania populácie (cluster sampling). Cluster = školská trieda (premenná ID3).

ICCs <- (lapply(rel.HLQ.na.rm[,c("theor_know", "prac_know", "crit_think", "self_aware", "citizenship")],
                function(x){ICCest(ID3, x, rel.HLQ.na.rm)}))
## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor

## Warning in ICCest(ID3, x, rel.HLQ.na.rm): 'x' has been coerced to a factor
ICCs.theor_know <- abs(ICCs$theor_know$ICC) # ICC pre theor_know
ICCs.theor_know
## [1] 0.1028632
ICCs.prac_know <- abs(ICCs$prac_know$ICC) # ICC pre prac_know
ICCs.prac_know
## [1] 0.06648811
ICCs.crit_think <- abs(ICCs$crit_think$ICC) # ICC pre crit_think
ICCs.crit_think
## [1] 0.09452927
ICCs.self_aware <- abs(ICCs$self_aware$ICC) # ICC pre self_aware
ICCs.self_aware
## [1] 0.0004898439
ICCs.citizenship <- abs(ICCs$citizenship$ICC) # ICC pre citizenship
ICCs.citizenship
## [1] 0.07762138

Priemerná hodnota design effect

1 + (cluster.size - 1)*((ICCs.theor_know+ICCs.prac_know+ICCs.crit_think+ICCs.self_aware+ICCs.citizenship)/5)
## [1] 1.879408

Intra-class korelácie a z nich vychádzajúca priemerná hodnota efektu výskumného dizajnu (Muthén & Sattora, 1995) marginálne indikuje prípustnosť považovať dáta za jednoúrovňové.

1-faktorový model

Špecifikácia 1-faktorového modelu merania

model2 <- '
HLQ =~ a*HL1 + b*HL2 + c*HL3 + d*HL4 + e*HL5 + f*HL6 + g*HL7 + h*HL8 + i*HL9 +
j*HL10 + k*HL11 + l*HL12 + m*HL13 + n*HL14 + o*HL15 + p*HL16 + q*HL17 + r*HL18 +
s*HL19 + t*HL20 + u*HL21 + v*HL22 + x*HL23 + y*HL24 + z*HL25
'

Estimácia 1-faktorového modelu

Podľa Muthén, 1984

fitted.model2 <- cfa(model = model2, data = data, meanstructure = TRUE, std.lv = TRUE, mimic = "Mplus",
                    estimator = "WLSMVS", test = "Satterthwaite", bootstrap = 50000,
                    ordered = c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9", "HL10",
                                "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17", "HL18", "HL19",
                                "HL20", "HL21", "HL22", "HL23", "HL24", "HL25"))

Je v poriadku ignorovať toto chybové hlásenie. Počet buniek HLa x HLb s nulovou frekvenciou je už zanedbateľný.

Test modelu, odhady voľných parametrov

Stačí si všímať “Robust” test, Latent variable, Covariances a R-square. Intercepts, Thresholds, Intercepts (…) môžte kľudne ignorovať.

summary(fitted.model2, standardized = TRUE, rsquare = TRUE)
## lavaan (0.5-23.1097) converged normally after  20 iterations
## 
##   Number of observations                           291
## 
##   Estimator                                       DWLS      Robust
##   Minimum Function Test Statistic              391.193     219.010
##   Degrees of freedom                               275          99
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.786
##     for the mean and variance adjusted correction (WLSMV)
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HLQ =~                                                                
##     HL1        (a)    0.497    0.054    9.278    0.000    0.497    0.497
##     HL2        (b)    0.491    0.056    8.783    0.000    0.491    0.491
##     HL3        (c)    0.606    0.043   13.949    0.000    0.606    0.606
##     HL4        (d)    0.661    0.040   16.500    0.000    0.661    0.661
##     HL5        (e)    0.629    0.041   15.464    0.000    0.629    0.629
##     HL6        (f)    0.455    0.055    8.344    0.000    0.455    0.455
##     HL7        (g)    0.524    0.046   11.328    0.000    0.524    0.524
##     HL8        (h)    0.627    0.041   15.275    0.000    0.627    0.627
##     HL9        (i)    0.581    0.047   12.378    0.000    0.581    0.581
##     HL10       (j)    0.705    0.036   19.596    0.000    0.705    0.705
##     HL11       (k)    0.566    0.050   11.318    0.000    0.566    0.566
##     HL12       (l)    0.667    0.036   18.440    0.000    0.667    0.667
##     HL13       (m)    0.596    0.045   13.358    0.000    0.596    0.596
##     HL14       (n)    0.448    0.053    8.391    0.000    0.448    0.448
##     HL15       (o)    0.611    0.044   13.922    0.000    0.611    0.611
##     HL16       (p)    0.642    0.038   17.014    0.000    0.642    0.642
##     HL17       (q)    0.539    0.054   10.030    0.000    0.539    0.539
##     HL18       (r)    0.662    0.050   13.283    0.000    0.662    0.662
##     HL19       (s)    0.549    0.047   11.683    0.000    0.549    0.549
##     HL20       (t)    0.765    0.033   23.458    0.000    0.765    0.765
##     HL21       (u)    0.673    0.038   17.921    0.000    0.673    0.673
##     HL22       (v)    0.374    0.060    6.232    0.000    0.374    0.374
##     HL23       (x)    0.674    0.039   17.472    0.000    0.674    0.674
##     HL24       (y)    0.687    0.039   17.832    0.000    0.687    0.687
##     HL25       (z)    0.517    0.051   10.237    0.000    0.517    0.517
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.000                               0.000    0.000
##    .HL2               0.000                               0.000    0.000
##    .HL3               0.000                               0.000    0.000
##    .HL4               0.000                               0.000    0.000
##    .HL5               0.000                               0.000    0.000
##    .HL6               0.000                               0.000    0.000
##    .HL7               0.000                               0.000    0.000
##    .HL8               0.000                               0.000    0.000
##    .HL9               0.000                               0.000    0.000
##    .HL10              0.000                               0.000    0.000
##    .HL11              0.000                               0.000    0.000
##    .HL12              0.000                               0.000    0.000
##    .HL13              0.000                               0.000    0.000
##    .HL14              0.000                               0.000    0.000
##    .HL15              0.000                               0.000    0.000
##    .HL16              0.000                               0.000    0.000
##    .HL17              0.000                               0.000    0.000
##    .HL18              0.000                               0.000    0.000
##    .HL19              0.000                               0.000    0.000
##    .HL20              0.000                               0.000    0.000
##    .HL21              0.000                               0.000    0.000
##    .HL22              0.000                               0.000    0.000
##    .HL23              0.000                               0.000    0.000
##    .HL24              0.000                               0.000    0.000
##    .HL25              0.000                               0.000    0.000
##     HLQ               0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1|t1           -1.284    0.100  -12.774    0.000   -1.284   -1.284
##     HL1|t2            0.537    0.078    6.925    0.000    0.537    0.537
##     HL2|t1           -1.174    0.095  -12.311    0.000   -1.174   -1.174
##     HL2|t2            0.143    0.074    1.931    0.054    0.143    0.143
##     HL3|t1           -1.460    0.111  -13.205    0.000   -1.460   -1.460
##     HL3|t2           -0.365    0.075   -4.846    0.000   -0.365   -0.365
##     HL3|t3            0.749    0.082    9.181    0.000    0.749    0.749
##     HL4|t1           -0.598    0.079   -7.610    0.000   -0.598   -0.598
##     HL4|t2            0.412    0.076    5.426    0.000    0.412    0.412
##     HL5|t1           -0.869    0.085  -10.266    0.000   -0.869   -0.869
##     HL5|t2            0.320    0.075    4.265    0.000    0.320    0.320
##     HL6|t1           -1.124    0.093  -12.051    0.000   -1.124   -1.124
##     HL6|t2           -0.108    0.074   -1.463    0.144   -0.108   -0.108
##     HL7|t1           -1.539    0.116  -13.276    0.000   -1.539   -1.539
##     HL7|t2           -0.459    0.076   -6.004    0.000   -0.459   -0.459
##     HL7|t3            0.820    0.083    9.837    0.000    0.820    0.820
##     HL8|t1           -0.772    0.082   -9.401    0.000   -0.772   -0.772
##     HL8|t2            0.302    0.075    4.032    0.000    0.302    0.302
##     HL9|t1           -0.894    0.085  -10.477    0.000   -0.894   -0.894
##     HL9|t2            0.151    0.074    2.047    0.041    0.151    0.151
##     HL10|t1          -0.988    0.088  -11.196    0.000   -0.988   -0.988
##     HL10|t2           0.143    0.074    1.931    0.054    0.143    0.143
##     HL11|t1          -1.366    0.105  -13.024    0.000   -1.366   -1.366
##     HL11|t2          -0.134    0.074   -1.814    0.070   -0.134   -0.134
##     HL12|t1          -1.435    0.109  -13.168    0.000   -1.435   -1.435
##     HL12|t2          -0.412    0.076   -5.426    0.000   -0.412   -0.412
##     HL12|t3           0.727    0.081    8.960    0.000    0.727    0.727
##     HL13|t1          -0.403    0.076   -5.310    0.000   -0.403   -0.403
##     HL13|t2           0.961    0.087   10.994    0.000    0.961    0.961
##     HL14|t1          -0.869    0.085  -10.266    0.000   -0.869   -0.869
##     HL14|t2           0.213    0.074    2.865    0.004    0.213    0.213
##     HL15|t1          -0.974    0.088  -11.095    0.000   -0.974   -0.974
##     HL15|t2           0.160    0.074    2.164    0.030    0.160    0.160
##     HL16|t1          -1.630    0.123  -13.266    0.000   -1.630   -1.630
##     HL16|t2          -0.619    0.079   -7.837    0.000   -0.619   -0.619
##     HL16|t3           0.761    0.082    9.292    0.000    0.761    0.761
##     HL17|t1          -1.389    0.106  -13.077    0.000   -1.389   -1.389
##     HL17|t2          -0.384    0.076   -5.078    0.000   -0.384   -0.384
##     HL18|t1          -0.275    0.075   -3.682    0.000   -0.275   -0.275
##     HL19|t1          -1.017    0.089  -11.394    0.000   -1.017   -1.017
##     HL19|t2           0.293    0.075    3.915    0.000    0.293    0.293
##     HL20|t1          -0.629    0.079   -7.950    0.000   -0.629   -0.629
##     HL20|t2           0.640    0.079    8.063    0.000    0.640    0.640
##     HL21|t1          -0.844    0.084  -10.053    0.000   -0.844   -0.844
##     HL21|t2           0.459    0.076    6.004    0.000    0.459    0.459
##     HL22|t1          -1.124    0.093  -12.051    0.000   -1.124   -1.124
##     HL22|t2          -0.082    0.074   -1.112    0.266   -0.082   -0.082
##     HL23|t1          -0.856    0.084  -10.160    0.000   -0.856   -0.856
##     HL23|t2           0.578    0.078    7.382    0.000    0.578    0.578
##     HL24|t1          -0.431    0.076   -5.658    0.000   -0.431   -0.431
##     HL24|t2           1.002    0.089   11.295    0.000    1.002    1.002
##     HL25|t1          -0.557    0.078   -7.154    0.000   -0.557   -0.557
##     HL25|t2           0.498    0.077    6.465    0.000    0.498    0.498
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HL1               0.753                               0.753    0.753
##    .HL2               0.759                               0.759    0.759
##    .HL3               0.633                               0.633    0.633
##    .HL4               0.563                               0.563    0.563
##    .HL5               0.605                               0.605    0.605
##    .HL6               0.793                               0.793    0.793
##    .HL7               0.726                               0.726    0.726
##    .HL8               0.607                               0.607    0.607
##    .HL9               0.662                               0.662    0.662
##    .HL10              0.503                               0.503    0.503
##    .HL11              0.680                               0.680    0.680
##    .HL12              0.555                               0.555    0.555
##    .HL13              0.645                               0.645    0.645
##    .HL14              0.799                               0.799    0.799
##    .HL15              0.627                               0.627    0.627
##    .HL16              0.588                               0.588    0.588
##    .HL17              0.709                               0.709    0.709
##    .HL18              0.562                               0.562    0.562
##    .HL19              0.698                               0.698    0.698
##    .HL20              0.415                               0.415    0.415
##    .HL21              0.547                               0.547    0.547
##    .HL22              0.860                               0.860    0.860
##    .HL23              0.546                               0.546    0.546
##    .HL24              0.527                               0.527    0.527
##    .HL25              0.733                               0.733    0.733
##     HLQ               1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     HL1               1.000                               1.000    1.000
##     HL2               1.000                               1.000    1.000
##     HL3               1.000                               1.000    1.000
##     HL4               1.000                               1.000    1.000
##     HL5               1.000                               1.000    1.000
##     HL6               1.000                               1.000    1.000
##     HL7               1.000                               1.000    1.000
##     HL8               1.000                               1.000    1.000
##     HL9               1.000                               1.000    1.000
##     HL10              1.000                               1.000    1.000
##     HL11              1.000                               1.000    1.000
##     HL12              1.000                               1.000    1.000
##     HL13              1.000                               1.000    1.000
##     HL14              1.000                               1.000    1.000
##     HL15              1.000                               1.000    1.000
##     HL16              1.000                               1.000    1.000
##     HL17              1.000                               1.000    1.000
##     HL18              1.000                               1.000    1.000
##     HL19              1.000                               1.000    1.000
##     HL20              1.000                               1.000    1.000
##     HL21              1.000                               1.000    1.000
##     HL22              1.000                               1.000    1.000
##     HL23              1.000                               1.000    1.000
##     HL24              1.000                               1.000    1.000
##     HL25              1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     HL1               0.247
##     HL2               0.241
##     HL3               0.367
##     HL4               0.437
##     HL5               0.395
##     HL6               0.207
##     HL7               0.274
##     HL8               0.393
##     HL9               0.338
##     HL10              0.497
##     HL11              0.320
##     HL12              0.445
##     HL13              0.355
##     HL14              0.201
##     HL15              0.373
##     HL16              0.412
##     HL17              0.291
##     HL18              0.438
##     HL19              0.302
##     HL20              0.585
##     HL21              0.453
##     HL22              0.140
##     HL23              0.454
##     HL24              0.473
##     HL25              0.267

Priemerný faktorový náboj

mean(inspect(fitted.model2,what="std")$lambda)
## [1] 0.5898883
table(inspect(fitted.model2,what="std")$lambda < .7)/25
## 
## FALSE  TRUE 
##  0.08  0.92

Indexy blízkej zhody modelu a dát

Treba si všímať .scaled indexy

fitMeasures(fitted.model2)
##                          npar                          fmin 
##                        78.000                         0.672 
##                         chisq                            df 
##                       391.193                       275.000 
##                        pvalue                  chisq.scaled 
##                         0.000                       219.010 
##                     df.scaled                 pvalue.scaled 
##                        99.000                         0.000 
##          chisq.scaling.factor                baseline.chisq 
##                         1.786                     10075.119 
##                   baseline.df               baseline.pvalue 
##                       300.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled 
##                      1347.981                        40.000 
##        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                         0.000                         7.474 
##                           cfi                           tli 
##                         0.988                         0.987 
##                          nnfi                           rfi 
##                         0.987                         0.958 
##                           nfi                          pnfi 
##                         0.961                         0.881 
##                           ifi                           rni 
##                         0.988                         0.988 
##                    cfi.scaled                    tli.scaled 
##                         0.908                         0.963 
##                    cfi.robust                    tli.robust 
##                            NA                            NA 
##                   nnfi.scaled                   nnfi.robust 
##                         0.963                            NA 
##                    rfi.scaled                    nfi.scaled 
##                         0.934                         0.838 
##                    ifi.scaled                    rni.scaled 
##                         0.838                         0.988 
##                    rni.robust                         rmsea 
##                            NA                         0.038 
##                rmsea.ci.lower                rmsea.ci.upper 
##                         0.029                         0.047 
##                  rmsea.pvalue                  rmsea.scaled 
##                         0.991                         0.065 
##         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.056                         0.073 
##           rmsea.pvalue.scaled                  rmsea.robust 
##                         0.003                            NA 
##         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                            NA                            NA 
##           rmsea.pvalue.robust                           rmr 
##                            NA                         0.066 
##                    rmr_nomean                          srmr 
##                         0.068                         0.066 
##                  srmr_bentler           srmr_bentler_nomean 
##                         0.066                         0.068 
##                   srmr_bollen            srmr_bollen_nomean 
##                         0.066                         0.068 
##                    srmr_mplus             srmr_mplus_nomean 
##                         0.066                         0.068 
##                         cn_05                         cn_01 
##                       234.278                       247.475 
##                           gfi                          agfi 
##                         0.972                         0.964 
##                          pgfi                           mfi 
##                         0.757                         0.818

\(χ^{2}\) test rozdielov medzi modelmi - p-hodnota

pchisq((fitted.model2@test[[2]]$stat - fitted.model@test[[2]]$stat),
       (fitted.model2@test[[1]]$df - fitted.model@test[[1]]$df),
       lower.tail = FALSE)
## [1] 1

Diagram

semPaths(fitted.model2, style = "mx", layout = "circle",
         edge.label.cex = 0.5, sizeLat = 5, nCharNodes = 0,
         nDigits = 2, "Standardized",
         intercepts = FALSE, residuals = TRUE, exoVar = FALSE,
         fade = TRUE, groups = "latents", pastel = TRUE)
## Warning in qgraph(Edgelist, labels = nLab, bidirectional = Bidir, directed
## = Directed, : The following arguments are not documented and likely not
## arguments of qgraph and thus ignored: loopRotation; residuals; residScale;
## residEdge; CircleEdgeEnd

Test modelu indikuje prítomnosť chybnej špecifikácie modelu. Popri indexoch blízkej zhody je preto potrebné analyzovať lokálne zdroje chybnej špecifikácie na základe matice reziduálnych korelácií

Matica reziduálnych korelácií

residuals.m2 <- residuals(fitted.model2, type = "cor" )$cor
residuals.m2
##      HL1    HL2    HL3    HL4    HL5    HL6    HL7    HL8    HL9    HL10  
## HL1   0.000                                                               
## HL2   0.147  0.000                                                        
## HL3  -0.020  0.102  0.000                                                 
## HL4  -0.166 -0.029  0.064  0.000                                          
## HL5  -0.085 -0.017  0.018  0.108  0.000                                   
## HL6   0.069  0.148 -0.070 -0.100 -0.043  0.000                            
## HL7   0.036 -0.049 -0.051  0.008 -0.015  0.080  0.000                     
## HL8   0.074 -0.117  0.053 -0.024 -0.017 -0.095  0.045  0.000              
## HL9   0.046  0.009 -0.063 -0.077  0.028 -0.006  0.052  0.064  0.000       
## HL10 -0.061 -0.014 -0.005  0.145  0.030 -0.028  0.027 -0.007  0.089  0.000
## HL11 -0.010  0.017 -0.097 -0.104 -0.057 -0.035 -0.121 -0.006 -0.015 -0.065
## HL12 -0.022 -0.055 -0.070  0.113  0.006  0.047  0.078 -0.064 -0.060  0.084
## HL13  0.069 -0.072  0.127 -0.124 -0.064  0.008 -0.021  0.078 -0.043 -0.113
## HL14  0.017  0.026 -0.087 -0.084  0.041  0.088 -0.134 -0.122 -0.025 -0.095
## HL15  0.068 -0.003  0.040 -0.071 -0.050  0.045 -0.081  0.046 -0.060 -0.097
## HL16 -0.044  0.037  0.017 -0.033 -0.151  0.007  0.165  0.004 -0.040  0.016
## HL17 -0.001  0.096  0.020 -0.024  0.003  0.196  0.039 -0.058 -0.021 -0.037
## HL18 -0.016 -0.088 -0.025  0.016 -0.017 -0.089 -0.166  0.086  0.083  0.004
## HL19 -0.054  0.092 -0.094 -0.046 -0.096 -0.023  0.025 -0.065 -0.010 -0.028
## HL20  0.056  0.004 -0.046  0.008 -0.034 -0.009  0.050  0.057 -0.092 -0.004
## HL21 -0.006 -0.016  0.020  0.000  0.136 -0.010 -0.053  0.022 -0.031 -0.030
## HL22  0.108  0.010 -0.010 -0.105 -0.077  0.098 -0.094 -0.105  0.028 -0.113
## HL23 -0.065 -0.035 -0.007 -0.037  0.050 -0.042  0.016 -0.024  0.140  0.008
## HL24 -0.036 -0.118  0.027  0.018  0.030 -0.146 -0.110  0.006 -0.009 -0.041
## HL25 -0.048  0.005  0.002 -0.059 -0.040 -0.010 -0.116 -0.111 -0.080 -0.079
##      HL11   HL12   HL13   HL14   HL15   HL16   HL17   HL18   HL19   HL20  
## HL1                                                                       
## HL2                                                                       
## HL3                                                                       
## HL4                                                                       
## HL5                                                                       
## HL6                                                                       
## HL7                                                                       
## HL8                                                                       
## HL9                                                                       
## HL10                                                                      
## HL11  0.000                                                               
## HL12 -0.066  0.000                                                        
## HL13  0.034 -0.016  0.000                                                 
## HL14  0.086  0.031  0.030  0.000                                          
## HL15  0.070 -0.111  0.079 -0.029  0.000                                   
## HL16  0.033  0.055  0.001 -0.029 -0.011  0.000                            
## HL17  0.025 -0.034 -0.056 -0.034  0.002  0.099  0.000                     
## HL18  0.053 -0.029 -0.078 -0.119  0.126 -0.024  0.063  0.000              
## HL19  0.164 -0.035  0.003 -0.051  0.013 -0.013  0.013  0.033  0.000       
## HL20 -0.010 -0.012  0.040 -0.035  0.050 -0.007 -0.108  0.006  0.035  0.000
## HL21 -0.049 -0.029 -0.074 -0.096  0.097 -0.053 -0.017  0.034  0.062 -0.010
## HL22  0.050 -0.042 -0.028 -0.002 -0.057 -0.025  0.119 -0.083  0.075 -0.020
## HL23  0.055 -0.111 -0.030 -0.168  0.010 -0.022 -0.041 -0.016  0.046  0.010
## HL24  0.079  0.011  0.052  0.049 -0.037 -0.047 -0.129 -0.052 -0.040  0.021
## HL25 -0.074  0.087  0.065  0.376 -0.158 -0.050  0.008  0.055 -0.030 -0.052
##      HL21   HL22   HL23   HL24   HL25  
## HL1                                    
## HL2                                    
## HL3                                    
## HL4                                    
## HL5                                    
## HL6                                    
## HL7                                    
## HL8                                    
## HL9                                    
## HL10                                   
## HL11                                   
## HL12                                   
## HL13                                   
## HL14                                   
## HL15                                   
## HL16                                   
## HL17                                   
## HL18                                   
## HL19                                   
## HL20                                   
## HL21  0.000                            
## HL22  0.019  0.000                     
## HL23 -0.052  0.125  0.000              
## HL24  0.018  0.064  0.109  0.000       
## HL25 -0.039  0.076 -0.086  0.069  0.000

Priemer reziduálnych korelácií

mean(abs(residuals.m2))
## [1] 0.0528761

Pre prehladnejšiu vizualizáciu, matica reziduí s vyznačenými reziduálnymi hodnotami > .1 (štandardizované z-reziduá je možné odhadnúť iba v prípade použitia estimátora z rodiny maximum likelihood. Arbitrárna hodnota .1 preto, lebo neumožní produkt dvoch nábojov > .3)

Počet premenných

p = 25

Ak máme v matici (p(p+1)/2 - p) = 300 elementov (bez diagonály), tak

(p*(p+1)/2 - p)*.05
## [1] 15

z nich môže byť signifikantných na hladine alfa = .05

HRUBÁ APROXIMÁCIA - približne toľko elementov môže byť > .1 Diag = diagonála, >.1 = reziduálna hodnota vyššia ako .1

ifelse(residuals.m2 == 0, "Diag", ifelse(residuals.m2 > .1, ">.1", "."))
##      HL1    HL2    HL3    HL4    HL5    HL6    HL7    HL8    HL9    HL10  
## HL1  "Diag" ">.1"  "."    "."    "."    "."    "."    "."    "."    "."   
## HL2  ">.1"  "Diag" ">.1"  "."    "."    ">.1"  "."    "."    "."    "."   
## HL3  "."    ">.1"  "Diag" "."    "."    "."    "."    "."    "."    "."   
## HL4  "."    "."    "."    "Diag" ">.1"  "."    "."    "."    "."    ">.1" 
## HL5  "."    "."    "."    ">.1"  "Diag" "."    "."    "."    "."    "."   
## HL6  "."    ">.1"  "."    "."    "."    "Diag" "."    "."    "."    "."   
## HL7  "."    "."    "."    "."    "."    "."    "Diag" "."    "."    "."   
## HL8  "."    "."    "."    "."    "."    "."    "."    "Diag" "."    "."   
## HL9  "."    "."    "."    "."    "."    "."    "."    "."    "Diag" "."   
## HL10 "."    "."    "."    ">.1"  "."    "."    "."    "."    "."    "Diag"
## HL11 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL12 "."    "."    "."    ">.1"  "."    "."    "."    "."    "."    "."   
## HL13 "."    "."    ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL15 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL16 "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL17 "."    "."    "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL18 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL19 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL21 "."    "."    "."    "."    ">.1"  "."    "."    "."    "."    "."   
## HL22 ">.1"  "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL23 "."    "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
## HL24 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL25 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
##      HL11   HL12   HL13   HL14   HL15   HL16   HL17   HL18   HL19   HL20  
## HL1  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL2  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL3  "."    "."    ">.1"  "."    "."    "."    "."    "."    "."    "."   
## HL4  "."    ">.1"  "."    "."    "."    "."    "."    "."    "."    "."   
## HL5  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL6  "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL7  "."    "."    "."    "."    "."    ">.1"  "."    "."    "."    "."   
## HL8  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL9  "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL10 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL11 "Diag" "."    "."    "."    "."    "."    "."    "."    ">.1"  "."   
## HL12 "."    "Diag" "."    "."    "."    "."    "."    "."    "."    "."   
## HL13 "."    "."    "Diag" "."    "."    "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "Diag" "."    "."    "."    "."    "."    "."   
## HL15 "."    "."    "."    "."    "Diag" "."    "."    ">.1"  "."    "."   
## HL16 "."    "."    "."    "."    "."    "Diag" "."    "."    "."    "."   
## HL17 "."    "."    "."    "."    "."    "."    "Diag" "."    "."    "."   
## HL18 "."    "."    "."    "."    ">.1"  "."    "."    "Diag" "."    "."   
## HL19 ">.1"  "."    "."    "."    "."    "."    "."    "."    "Diag" "."   
## HL20 "."    "."    "."    "."    "."    "."    "."    "."    "."    "Diag"
## HL21 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL22 "."    "."    "."    "."    "."    "."    ">.1"  "."    "."    "."   
## HL23 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL24 "."    "."    "."    "."    "."    "."    "."    "."    "."    "."   
## HL25 "."    "."    "."    ">.1"  "."    "."    "."    "."    "."    "."   
##      HL21   HL22   HL23   HL24   HL25  
## HL1  "."    ">.1"  "."    "."    "."   
## HL2  "."    "."    "."    "."    "."   
## HL3  "."    "."    "."    "."    "."   
## HL4  "."    "."    "."    "."    "."   
## HL5  ">.1"  "."    "."    "."    "."   
## HL6  "."    "."    "."    "."    "."   
## HL7  "."    "."    "."    "."    "."   
## HL8  "."    "."    "."    "."    "."   
## HL9  "."    "."    ">.1"  "."    "."   
## HL10 "."    "."    "."    "."    "."   
## HL11 "."    "."    "."    "."    "."   
## HL12 "."    "."    "."    "."    "."   
## HL13 "."    "."    "."    "."    "."   
## HL14 "."    "."    "."    "."    ">.1" 
## HL15 "."    "."    "."    "."    "."   
## HL16 "."    "."    "."    "."    "."   
## HL17 "."    ">.1"  "."    "."    "."   
## HL18 "."    "."    "."    "."    "."   
## HL19 "."    "."    "."    "."    "."   
## HL20 "."    "."    "."    "."    "."   
## HL21 "Diag" "."    "."    "."    "."   
## HL22 "."    "Diag" ">.1"  "."    "."   
## HL23 "."    ">.1"  "Diag" ">.1"  "."   
## HL24 "."    "."    ">.1"  "Diag" "."   
## HL25 "."    "."    "."    "."    "Diag"

Odhad reliability

Odhad internej konzistencie - McDonaldova Omega

round(omega(rel.HLQ.na.rm[,1:25], poly = TRUE)$omega.tot, 2) # pre jednofaktorovu (25 polozkovu) skalu
## 295 cells were adjusted for 0 values using the correction for continuity. Examine your data carefully.

## [1] 0.94

Odhad stability v čase

Výpočet sumárneho skóre HLQ

rel.HLQ.na.rm$HLQ_sum <- rowMeans(rel.HLQ.na.rm[,c("HL1", "HL2", "HL3", "HL4", "HL5", "HL6", "HL7", "HL8", "HL9",
                                                   "HL10", "HL11", "HL12", "HL13", "HL14", "HL15", "HL16", "HL17",
                                                   "HL18", "HL19", "HL20", "HL21", "HL22", "HL23", "HL24", "HL25")], na.rm = TRUE)

Výpočet sumárného skóre retestu RHLQ

rel.HLQ.na.rm$RHLQ_sum <- rowMeans(rel.HLQ.na.rm[,c("RHL1", "RHL2", "RHL3", "RHL4", "RHL5", "RHL6", "RHL7", "RHL8", "RHL9",
                                                    "RHL10", "RHL11", "RHL12", "RHL13", "RHL14", "RHL15", "RHL16", "RHL17",
                                                    "RHL18", "RHL19", "RHL20", "RHL21", "RHL22", "RHL23", "RHL24", "RHL25")], na.rm = TRUE)

Test-retest korelácia

round(with(rel.HLQ.na.rm, cor.test(HLQ_sum, RHLQ_sum))$estimate, 2) # pre jednofaktorovu (25 polozkovu) skalu
##  cor 
## 0.76
sessionInfo()
## R version 3.3.2 (2016-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS  10.13.2
## 
## locale:
## [1] sk_SK.UTF-8/sk_SK.UTF-8/sk_SK.UTF-8/C/sk_SK.UTF-8/sk_SK.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] BaylorEdPsych_0.5  Amelia_1.7.4       Rcpp_0.12.12      
## [4] ICC_2.3.0          psych_1.7.3.21     dplyr_0.7.2       
## [7] semPlot_1.1        lavaan_0.5-23.1097
## 
## loaded via a namespace (and not attached):
##  [1] nlme_3.1-131          pbkrtest_0.4-7        RColorBrewer_1.1-2   
##  [4] rprojroot_1.2         mi_1.0                tools_3.3.2          
##  [7] backports_1.0.5       R6_2.2.2              rpart_4.1-10         
## [10] d3Network_0.5.2.1     Hmisc_4.0-3           lazyeval_0.2.0       
## [13] mgcv_1.8-17           colorspace_1.3-2      nnet_7.3-12          
## [16] gridExtra_2.2.1       mnormt_1.5-5          qgraph_1.4.3         
## [19] fdrtool_1.2.15        quantreg_5.29         htmlTable_1.9        
## [22] SparseM_1.76          network_1.13.0        scales_0.4.1         
## [25] checkmate_1.8.2       quadprog_1.5-5        sem_3.1-9            
## [28] stringr_1.2.0         digest_0.6.12         pbivnorm_0.6.0       
## [31] foreign_0.8-67        minqa_1.2.4           rmarkdown_1.3        
## [34] base64enc_0.1-3       jpeg_0.1-8            pkgconfig_2.0.1      
## [37] htmltools_0.3.6       lme4_1.1-13           lisrelToR_0.1.4      
## [40] htmlwidgets_0.8       rlang_0.1.1           huge_1.2.7           
## [43] bindr_0.1             statnet.common_3.3.0  gtools_3.5.0         
## [46] acepack_1.4.1         car_2.1-5             magrittr_1.5         
## [49] OpenMx_2.7.16         Formula_1.2-2         Matrix_1.2-8         
## [52] munsell_0.4.3         abind_1.4-5           rockchalk_1.8.101    
## [55] stringi_1.1.2         whisker_0.3-2         yaml_2.1.14          
## [58] MASS_7.3-45           plyr_1.8.4            matrixcalc_1.0-3     
## [61] grid_3.3.2            parallel_3.3.2        lattice_0.20-34      
## [64] splines_3.3.2         sna_2.4               knitr_1.17           
## [67] igraph_1.1.2          boot_1.3-18           rjson_0.2.15         
## [70] corpcor_1.6.9         reshape2_1.4.2        stats4_3.3.2         
## [73] GPArotation_2014.11-1 glue_1.1.1            XML_3.98-1.9         
## [76] evaluate_0.10.1       latticeExtra_0.6-28   data.table_1.10.4    
## [79] png_0.1-7             nloptr_1.0.4          MatrixModels_0.4-1   
## [82] gtable_0.2.0          assertthat_0.1        ggplot2_2.2.1        
## [85] semTools_0.4-14       coda_0.19-1           survival_2.40-1      
## [88] glasso_1.8            tibble_1.3.3          arm_1.9-3            
## [91] ggm_2.3               ellipse_0.3-8         bindrcpp_0.2         
## [94] cluster_2.0.5