setwd("~/Documents/Dropbox/Research/Adrian")
a<-read.csv ("AI_algo_2_humans.csv", header=T, sep=",")

recommending movie

t.test(a$alg_1, a$ai_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_1 and a$ai_1
## t = 1.4847, df = 804.85, p-value = 0.138
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.9328527  6.7249574
## sample estimates:
## mean of x mean of y 
##  59.98718  57.09113
t.test(a$humanqual_1, a$humanavg_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_1 and a$humanavg_1
## t = 5.3463, df = 750.64, p-value = 1.192e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   5.025505 10.857775
## sample estimates:
## mean of x mean of y 
##  76.21205  68.27041
t.test(a$alg_1, a$humanavg_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_1 and a$humanavg_1
## t = -4.6065, df = 761.46, p-value = 4.798e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.813149  -4.753308
## sample estimates:
## mean of x mean of y 
##  59.98718  68.27041

predicting joke funiness

t.test(a$alg_2, a$ai_2)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_2 and a$ai_2
## t = 0.38127, df = 803.61, p-value = 0.7031
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.925632  4.336146
## sample estimates:
## mean of x mean of y 
##  30.55897  29.85372
t.test(a$humanqual_2, a$humanavg_2)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_2 and a$humanavg_2
## t = 6.2476, df = 800.14, p-value = 6.767e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   7.527757 14.425132
## sample estimates:
## mean of x mean of y 
##  64.79277  53.81633
t.test(a$alg_2, a$humanavg_2)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_2 and a$humanavg_2
## t = -12.719, df = 779.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -26.84695 -19.66775
## sample estimates:
## mean of x mean of y 
##  30.55897  53.81633

recommending restaurant

t.test(a$alg_3, a$ai_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_3 and a$ai_3
## t = 1.2535, df = 803.57, p-value = 0.2104
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.331429  6.036392
## sample estimates:
## mean of x mean of y 
##  61.51795  59.16547
t.test(a$humanqual_3, a$humanavg_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_3 and a$humanavg_3
## t = 5.5339, df = 741.95, p-value = 4.345e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   5.13789 10.78739
## sample estimates:
## mean of x mean of y 
##  78.37590  70.41327
t.test(a$alg_3, a$humanavg_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_3 and a$humanavg_3
## t = -5.0657, df = 761.77, p-value = 5.111e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.342502  -5.448131
## sample estimates:
## mean of x mean of y 
##  61.51795  70.41327

recommending music

t.test(a$alg_4, a$ai_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_4 and a$ai_4
## t = 0.34211, df = 800.27, p-value = 0.7324
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.171824  4.510802
## sample estimates:
## mean of x mean of y 
##  59.37692  58.70743
t.test(a$humanqual_4, a$humanavg_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_4 and a$humanavg_4
## t = 6.7199, df = 751.07, p-value = 3.596e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   7.346373 13.410131
## sample estimates:
## mean of x mean of y 
##  74.94458  64.56633
t.test(a$alg_4, a$humanavg_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_4 and a$humanavg_4
## t = -2.7836, df = 762.37, p-value = 0.00551
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.849195 -1.529612
## sample estimates:
## mean of x mean of y 
##  59.37692  64.56633

gift

t.test(a$alg_5, a$ai_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_5 and a$ai_5
## t = 0.090414, df = 802.56, p-value = 0.928
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.799768  4.166711
## sample estimates:
## mean of x mean of y 
##  45.57436  45.39089
t.test(a$humanqual_5, a$humanavg_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_5 and a$humanavg_5
## t = 10.712, df = 741.47, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  14.44776 20.93158
## sample estimates:
## mean of x mean of y 
##  75.28916  57.59949
t.test(a$ai_5, a$humanavg_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_5 and a$humanavg_5
## t = -6.3146, df = 805.23, p-value = 4.475e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -16.003706  -8.413499
## sample estimates:
## mean of x mean of y 
##  45.39089  57.59949

romantic

t.test(a$alg_6, a$ai_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_6 and a$ai_6
## t = 3.152, df = 793.49, p-value = 0.001682
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.274065 9.782308
## sample estimates:
## mean of x mean of y 
##  37.28718  31.25899
t.test(a$humanqual_6, a$humanavg_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_6 and a$humanavg_6
## t = 9.7033, df = 780.08, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  14.39460 21.69579
## sample estimates:
## mean of x mean of y 
##  58.88193  40.83673
t.test(a$ai_6, a$humanavg_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_6 and a$humanavg_6
## t = -5.0072, df = 795.89, p-value = 6.805e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -13.332486  -5.822998
## sample estimates:
## mean of x mean of y 
##  31.25899  40.83673
t.test(a$alg_6, a$humanavg_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_6 and a$humanavg_6
## t = -1.7801, df = 780, p-value = 0.07546
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -7.4639415  0.3648311
## sample estimates:
## mean of x mean of y 
##  37.28718  40.83673

news article

t.test(a$alg_7, a$ai_7)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_7 and a$ai_7
## t = -1.0162, df = 802.2, p-value = 0.3099
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.005482  1.908525
## sample estimates:
## mean of x mean of y 
##  37.25128  39.29976
t.test(a$humanqual_7, a$humanavg_7)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_7 and a$humanavg_7
## t = 16.274, df = 726.96, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  24.70146 31.47876
## sample estimates:
## mean of x mean of y 
##  78.81205  50.72194
t.test(a$ai_7, a$humanavg_7)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_7 and a$humanavg_7
## t = -5.7727, df = 806.69, p-value = 1.112e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -15.306065  -7.538292
## sample estimates:
## mean of x mean of y 
##  39.29976  50.72194

disease treatment

t.test(a$alg_8, a$ai_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_8 and a$ai_8
## t = 1.6477, df = 804.81, p-value = 0.0998
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6579838  7.5372680
## sample estimates:
## mean of x mean of y 
##  47.53077  44.09113
t.test(a$humanqual_8, a$humanavg_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_8 and a$humanavg_8
## t = 27.423, df = 745.67, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  45.08724 52.04041
## sample estimates:
## mean of x mean of y 
##  73.10602  24.54220
t.test(a$ai_8, a$humanavg_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_8 and a$humanavg_8
## t = 9.5638, df = 805.29, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.53662 23.56124
## sample estimates:
## mean of x mean of y 
##  44.09113  24.54220
t.test(a$alg_8, a$humanavg_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_8 and a$humanavg_8
## t = 11.355, df = 777.42, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  19.01429 26.96285
## sample estimates:
## mean of x mean of y 
##  47.53077  24.54220
t.test(a$alg_8, a$humanqual_8)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_8 and a$humanqual_8
## t = -14.045, df = 727.71, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -29.15013 -22.00038
## sample estimates:
## mean of x mean of y 
##  47.53077  73.10602

marketing strategy

t.test(a$alg_9, a$ai_9)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_9 and a$ai_9
## t = 2.3803, df = 802.71, p-value = 0.01753
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.7874793 8.1944060
## sample estimates:
## mean of x mean of y 
##  56.32308  51.83213
t.test(a$humanqual_9, a$humanavg_9)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_9 and a$humanavg_9
## t = 17.272, df = 747.31, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  26.57342 33.38859
## sample estimates:
## mean of x mean of y 
##   69.9759   39.9949
t.test(a$ai_9, a$humanavg_9)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_9 and a$humanavg_9
## t = 6.2161, df = 803.19, p-value = 8.182e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.099287 15.575186
## sample estimates:
## mean of x mean of y 
##  51.83213  39.99490
t.test(a$alg_9, a$humanavg_9)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_9 and a$humanavg_9
## t = 8.492, df = 779.81, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  12.55376 20.10260
## sample estimates:
## mean of x mean of y 
##  56.32308  39.99490
t.test(a$alg_9, a$humanqual_9)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_9 and a$humanqual_9
## t = -7.9539, df = 750.88, p-value = 6.645e-15
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -17.02251 -10.28314
## sample estimates:
## mean of x mean of y 
##  56.32308  69.97590

driving a car

t.test(a$alg_10, a$ai_10)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_10 and a$ai_10
## t = -0.75988, df = 803.66, p-value = 0.4476
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.225904  2.750863
## sample estimates:
## mean of x mean of y 
##  47.05385  48.79137
t.test(a$humanqual_10, a$humanavg_10)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_10 and a$humanavg_10
## t = 4.4707, df = 742.45, p-value = 9.015e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   4.032019 10.345422
## sample estimates:
## mean of x mean of y 
##  80.60964  73.42092
t.test(a$ai_10, a$humanavg_10)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_10 and a$humanavg_10
## t = -11.98, df = 776.75, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -28.66514 -20.59396
## sample estimates:
## mean of x mean of y 
##  48.79137  73.42092

driving a truck

t.test(a$alg_11, a$ai_11)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_11 and a$ai_11
## t = -0.8571, df = 803.06, p-value = 0.3916
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.556038  2.570832
## sample estimates:
## mean of x mean of y 
##  43.15128  45.14388
t.test(a$humanqual_11, a$humanavg_11)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_11 and a$humanavg_11
## t = 10.797, df = 689.56, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.42743 22.28535
## sample estimates:
## mean of x mean of y 
##  80.66506  61.80867
t.test(a$ai_11, a$humanavg_11)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_11 and a$humanavg_11
## t = -7.634, df = 801.14, p-value = 6.477e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -20.94980 -12.37977
## sample estimates:
## mean of x mean of y 
##  45.14388  61.80867

airplane

t.test(a$alg_12, a$ai_12)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_12 and a$ai_12
## t = -0.3082, df = 803.43, p-value = 0.758
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.342047  3.892167
## sample estimates:
## mean of x mean of y 
##  46.76667  47.49161
t.test(a$humanqual_12, a$humanavg_12)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_12 and a$humanavg_12
## t = 28.431, df = 718.15, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  49.15409 56.44632
## sample estimates:
## mean of x mean of y 
##  79.27470  26.47449
t.test(a$ai_12, a$humanavg_12)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_12 and a$humanavg_12
## t = 9.3883, df = 803.98, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  16.62281 25.41142
## sample estimates:
## mean of x mean of y 
##  47.49161  26.47449
t.test(a$alg_12, a$humanqual_12)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_12 and a$humanqual_12
## t = -16.315, df = 672.87, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -36.42033 -28.59574
## sample estimates:
## mean of x mean of y 
##  46.76667  79.27470

driving a subway

t.test(a$alg_13, a$ai_13)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_13 and a$ai_13
## t = -0.76967, df = 801.4, p-value = 0.4417
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.545779  2.858378
## sample estimates:
## mean of x mean of y 
##  52.04359  53.88729
t.test(a$humanqual_13, a$humanavg_13)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_13 and a$humanavg_13
## t = 21.351, df = 722.19, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  38.40940 46.18825
## sample estimates:
## mean of x mean of y 
##  76.51566  34.21684
t.test(a$ai_13, a$humanavg_13)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_13 and a$humanavg_13
## t = 8.5093, df = 806.96, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.13294 24.20797
## sample estimates:
## mean of x mean of y 
##  53.88729  34.21684
t.test(a$alg_13, a$humanqual_13)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_13 and a$humanqual_13
## t = -11.775, df = 690.2, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -28.55261 -20.39154
## sample estimates:
## mean of x mean of y 
##  52.04359  76.51566

predicting weather

t.test(a$alg_14, a$ai_14)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_14 and a$ai_14
## t = 0.5765, df = 801, p-value = 0.5644
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.367761  4.336844
## sample estimates:
## mean of x mean of y 
##  68.68718  67.70264
t.test(a$humanqual_14, a$humanavg_14)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_14 and a$humanavg_14
## t = 9.633, df = 795.34, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  13.47889 20.37800
## sample estimates:
## mean of x mean of y 
##  57.08916  40.16071
t.test(a$ai_14, a$humanavg_14)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_14 and a$humanavg_14
## t = 15.708, df = 796.01, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  24.10014 30.98371
## sample estimates:
## mean of x mean of y 
##  67.70264  40.16071
t.test(a$alg_14, a$humanqual_14)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_14 and a$humanqual_14
## t = 6.7751, df = 799.8, p-value = 2.411e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.23774 14.95831
## sample estimates:
## mean of x mean of y 
##  68.68718  57.08916

predicting stock market

t.test(a$alg_15, a$ai_15)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_15 and a$ai_15
## t = 2.0661, df = 804.91, p-value = 0.03914
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1872905 7.3150523
## sample estimates:
## mean of x mean of y 
##  62.63846  58.88729
t.test(a$humanqual_15, a$humanavg_15)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_15 and a$humanavg_15
## t = 12.531, df = 796.17, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  18.05357 24.75996
## sample estimates:
## mean of x mean of y 
##  54.53976  33.13299
t.test(a$alg_15, a$humanavg_15)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_15 and a$humanavg_15
## t = 16.57, df = 778.77, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  26.00993 33.00101
## sample estimates:
## mean of x mean of y 
##  62.63846  33.13299
t.test(a$alg_15, a$humanqual_15)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_15 and a$humanqual_15
## t = 4.7003, df = 792.28, p-value = 3.062e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   4.71651 11.48089
## sample estimates:
## mean of x mean of y 
##  62.63846  54.53976

predicting election

t.test(a$alg_16, a$ai_16)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_16 and a$ai_16
## t = 1.0863, df = 801.49, p-value = 0.2777
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.678377  5.838052
## sample estimates:
## mean of x mean of y 
##  54.15897  52.07914
t.test(a$humanqual_16, a$humanavg_16)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_16 and a$humanavg_16
## t = 9.0754, df = 803.54, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  11.83466 18.36699
## sample estimates:
## mean of x mean of y 
##  51.41205  36.31122
t.test(a$alg_16, a$humanavg_16)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_16 and a$humanavg_16
## t = 9.8301, df = 762.64, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  14.28355 21.41195
## sample estimates:
## mean of x mean of y 
##  54.15897  36.31122
t.test(a$alg_16, a$humanqual_16)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_16 and a$humanqual_16
## t = 1.522, df = 774.09, p-value = 0.1284
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.7960694  6.2899218
## sample estimates:
## mean of x mean of y 
##  54.15897  51.41205

predicting employee performance

t.test(a$alg_17, a$ai_17)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_17 and a$ai_17
## t = 1.2786, df = 803.66, p-value = 0.2014
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.288217  6.101647
## sample estimates:
## mean of x mean of y 
##  50.46667  48.05995
t.test(a$humanqual_17, a$humanavg_17)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_17 and a$humanavg_17
## t = 11.155, df = 784.06, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.40256 21.98109
## sample estimates:
## mean of x mean of y 
##  60.51325  41.82143
t.test(a$alg_17, a$humanavg_17)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_17 and a$humanavg_17
## t = 4.7041, df = 777.28, p-value = 3.017e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   5.037598 12.252879
## sample estimates:
## mean of x mean of y 
##  50.46667  41.82143
t.test(a$alg_17, a$humanqual_17)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_17 and a$humanqual_17
## t = -5.8013, df = 765.54, p-value = 9.629e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -13.446196  -6.646977
## sample estimates:
## mean of x mean of y 
##  50.46667  60.51325

predicting student performance

t.test(a$alg_18, a$ai_18)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_18 and a$ai_18
## t = 0.52114, df = 804.8, p-value = 0.6024
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.675954  4.610431
## sample estimates:
## mean of x mean of y 
##  46.27179  45.30456
t.test(a$humanqual_18, a$humanavg_18)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_18 and a$humanavg_18
## t = 12.893, df = 769.57, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  18.41684 25.03236
## sample estimates:
## mean of x mean of y 
##  62.78072  41.05612
t.test(a$alg_18, a$humanavg_18)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_18 and a$humanavg_18
## t = 2.839, df = 779.98, p-value = 0.004644
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.609269 8.822075
## sample estimates:
## mean of x mean of y 
##  46.27179  41.05612
t.test(a$alg_18, a$humanqual_18)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_18 and a$humanqual_18
## t = -9.7835, df = 766.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -19.82145 -13.19641
## sample estimates:
## mean of x mean of y 
##  46.27179  62.78072

predicting recidivism

t.test(a$alg_19, a$ai_19)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_19 and a$ai_19
## t = 1.6443, df = 791.82, p-value = 0.1005
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6149504  6.9604217
## sample estimates:
## mean of x mean of y 
##  41.96410  38.79137
t.test(a$humanqual_19, a$humanavg_19)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_19 and a$humanavg_19
## t = 10.304, df = 794.89, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  14.67524 21.58215
## sample estimates:
## mean of x mean of y 
##  54.06747  35.93878
t.test(a$alg_19, a$humanavg_19)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_19 and a$humanavg_19
## t = 3.1252, df = 772.31, p-value = 0.001843
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.240635 9.810020
## sample estimates:
## mean of x mean of y 
##  41.96410  35.93878
t.test(a$alg_19, a$humanqual_19)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_19 and a$humanqual_19
## t = -6.51, df = 768.73, p-value = 1.356e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -15.753092  -8.453643
## sample estimates:
## mean of x mean of y 
##  41.96410  54.06747

buy sell stocks

t.test(a$alg_20, a$ai_20)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_20 and a$ai_20
## t = 2.2254, df = 804.7, p-value = 0.02633
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.5033584 8.0328526
## sample estimates:
## mean of x mean of y 
##  60.06667  55.79856
t.test(a$humanqual_20, a$humanavg_20)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_20 and a$humanavg_20
## t = 14.653, df = 771.28, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  21.87744 28.64604
## sample estimates:
## mean of x mean of y 
##  61.84337  36.58163
t.test(a$alg_20, a$humanavg_20)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_20 and a$humanavg_20
## t = 12.434, df = 779.72, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  19.77741 27.19266
## sample estimates:
## mean of x mean of y 
##  60.06667  36.58163
t.test(a$alg_20, a$humanqual_20)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_20 and a$humanqual_20
## t = -1.0205, df = 763.45, p-value = 0.3078
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.194439  1.641025
## sample estimates:
## mean of x mean of y 
##  60.06667  61.84337

diagnose disease

t.test(a$alg_21, a$ai_21)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_21 and a$ai_21
## t = -0.043616, df = 804.72, p-value = 0.9652
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.154042  3.973448
## sample estimates:
## mean of x mean of y 
##  48.34615  48.43645
t.test(a$humanqual_21, a$humanavg_21)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_21 and a$humanavg_21
## t = 27.38, df = 738.61, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  44.82092 51.74468
## sample estimates:
## mean of x mean of y 
##  73.44096  25.15816
t.test(a$ai_21, a$humanavg_21)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_21 and a$humanavg_21
## t = 11.425, df = 806.77, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  19.27904 27.27754
## sample estimates:
## mean of x mean of y 
##  48.43645  25.15816
t.test(a$alg_21, a$humanqual_21)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_21 and a$humanqual_21
## t = -13.932, df = 722.96, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -28.63113 -21.55849
## sample estimates:
## mean of x mean of y 
##  48.34615  73.44096

hire fire employees

t.test(a$alg_22, a$ai_22)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_22 and a$ai_22
## t = 0.75659, df = 801.96, p-value = 0.4495
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.250076  5.072507
## sample estimates:
## mean of x mean of y 
##  33.94359  32.53237
t.test(a$humanqual_22, a$humanavg_22)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_22 and a$humanavg_22
## t = 16.703, df = 728.57, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  25.87093 32.76234
## sample estimates:
## mean of x mean of y 
##  72.16867  42.85204
t.test(a$ai_22, a$humanavg_22)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_22 and a$humanavg_22
## t = -5.3753, df = 796.73, p-value = 1.005e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -14.088177  -6.551156
## sample estimates:
## mean of x mean of y 
##  32.53237  42.85204
t.test(a$alg_22, a$humanqual_22)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_22 and a$humanqual_22
## t = -22.549, df = 746.25, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -41.55306 -34.89711
## sample estimates:
## mean of x mean of y 
##  33.94359  72.16867

giving directions

t.test(a$alg_23, a$ai_23)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_23 and a$ai_23
## t = -0.08318, df = 802.28, p-value = 0.9337
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.021148  2.775510
## sample estimates:
## mean of x mean of y 
##  82.25128  82.37410
t.test(a$humanqual_23, a$humanavg_23)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_23 and a$humanavg_23
## t = 3.0604, df = 801.59, p-value = 0.002284
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.828955 8.371573
## sample estimates:
## mean of x mean of y 
##  70.46506  65.36480
t.test(a$ai_23, a$humanavg_23)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_23 and a$humanavg_23
## t = 10.752, df = 781.28, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  13.90381 20.11480
## sample estimates:
## mean of x mean of y 
##   82.3741   65.3648
t.test(a$alg_23, a$humanqual_23)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_23 and a$humanqual_23
## t = 7.5226, df = 800.23, p-value = 1.444e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.710759 14.861685
## sample estimates:
## mean of x mean of y 
##  82.25128  70.46506

play piano

t.test(a$alg_24, a$ai_24)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_24 and a$ai_24
## t = -2.0446, df = 793.27, p-value = 0.04123
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -9.190799 -0.187176
## sample estimates:
## mean of x mean of y 
##  61.02564  65.71463
t.test(a$humanqual_24, a$humanavg_24)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_24 and a$humanavg_24
## t = 16.904, df = 668.68, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  27.38546 34.58351
## sample estimates:
## mean of x mean of y 
##  83.52530  52.54082
t.test(a$ai_24, a$humanavg_24)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_24 and a$humanavg_24
## t = 6.0203, df = 806.31, p-value = 2.643e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.878487 17.469137
## sample estimates:
## mean of x mean of y 
##  65.71463  52.54082
t.test(a$alg_24, a$humanqual_24)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_24 and a$humanqual_24
## t = -11.495, df = 629.42, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -26.34322 -18.65610
## sample estimates:
## mean of x mean of y 
##  61.02564  83.52530

compose song

t.test(a$alg_25, a$ai_25)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_25 and a$ai_25
## t = 1.0895, df = 802.02, p-value = 0.2763
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.843405  6.441819
## sample estimates:
## mean of x mean of y 
##  43.43590  41.13669
t.test(a$humanqual_25, a$humanavg_25)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_25 and a$humanavg_25
## t = 19.476, df = 707.37, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  32.33482 39.58500
## sample estimates:
## mean of x mean of y 
##  81.11807  45.15816
t.test(a$ai_25, a$humanavg_25)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_25 and a$humanavg_25
## t = -1.9053, df = 804.24, p-value = 0.0571
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.1645729  0.1216277
## sample estimates:
## mean of x mean of y 
##  41.13669  45.15816
t.test(a$alg_25, a$humanqual_25)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_25 and a$humanqual_25
## t = -20.412, df = 704.51, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -41.30671 -34.05764
## sample estimates:
## mean of x mean of y 
##  43.43590  81.11807

schedule events

t.test(a$alg_26, a$ai_26)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_26 and a$ai_26
## t = -0.49797, df = 805, p-value = 0.6186
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.486323  2.670681
## sample estimates:
## mean of x mean of y 
##  68.57179  69.47962
t.test(a$humanqual_26, a$humanavg_26)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_26 and a$humanavg_26
## t = 11.933, df = 713.62, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.67543 21.84921
## sample estimates:
## mean of x mean of y 
##  77.92048  59.15816
t.test(a$ai_26, a$humanavg_26)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_26 and a$humanavg_26
## t = 5.6297, df = 806.94, p-value = 2.492e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   6.722672 13.920234
## sample estimates:
## mean of x mean of y 
##  69.47962  59.15816
t.test(a$alg_26, a$humanqual_26)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_26 and a$humanqual_26
## t = -5.9919, df = 715.37, p-value = 3.287e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.411870  -6.285504
## sample estimates:
## mean of x mean of y 
##  68.57179  77.92048

analyze data

t.test(a$alg_27, a$ai_27)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_27 and a$ai_27
## t = 0.69587, df = 804.4, p-value = 0.4867
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.920670  4.030354
## sample estimates:
## mean of x mean of y 
##  80.40256  79.34772
t.test(a$humanqual_27, a$humanavg_27)
## 
##  Welch Two Sample t-test
## 
## data:  a$humanqual_27 and a$humanavg_27
## t = 14.528, df = 755.14, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  21.66789 28.43838
## sample estimates:
## mean of x mean of y 
##  68.92048  43.86735
t.test(a$ai_27, a$humanavg_27)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_27 and a$humanavg_27
## t = 20.332, df = 766.27, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  32.05476 38.90599
## sample estimates:
## mean of x mean of y 
##  79.34772  43.86735
t.test(a$alg_27, a$humanqual_27)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_27 and a$humanqual_27
## t = 7.6953, df = 803, p-value = 4.142e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.553214 14.410951
## sample estimates:
## mean of x mean of y 
##  80.40256  68.92048

Between subjects

First select the cases of each condition in which that condition was seen first

hum <- a[c(69:95, 129)]
table(hum$DO.BR.FL_5)
## 
## ai + algorithm|humans humans|ai + algorithm 
##                   425                   382
humfirst <- subset(hum, DO.BR.FL_5 == "humans|ai + algorithm")
humfirst <- subset(humfirst, humanqual_1 != "NA")


humavg <- a[c(96:122, 129)]
humavgfirst <- subset(humavg, DO.BR.FL_5 == "humans|ai + algorithm")
humavgfirst <- subset(humavgfirst, humanavg_1 != "NA")

names(a)
##   [1] "v1"                 "V2"                 "V3"                
##   [4] "V4"                 "V5"                 "V6"                
##   [7] "V7"                 "V8"                 "V9"                
##  [10] "V10"                "Q11"                "Q13"               
##  [13] "Q15"                "attn"               "alg_1"             
##  [16] "alg_2"              "alg_3"              "alg_4"             
##  [19] "alg_5"              "alg_6"              "alg_7"             
##  [22] "alg_8"              "alg_9"              "alg_10"            
##  [25] "alg_11"             "alg_12"             "alg_13"            
##  [28] "alg_14"             "alg_15"             "alg_16"            
##  [31] "alg_17"             "alg_18"             "alg_19"            
##  [34] "alg_20"             "alg_21"             "alg_22"            
##  [37] "alg_23"             "alg_24"             "alg_25"            
##  [40] "alg_26"             "alg_27"             "ai_1"              
##  [43] "ai_2"               "ai_3"               "ai_4"              
##  [46] "ai_5"               "ai_6"               "ai_7"              
##  [49] "ai_8"               "ai_9"               "ai_10"             
##  [52] "ai_11"              "ai_12"              "ai_13"             
##  [55] "ai_14"              "ai_15"              "ai_16"             
##  [58] "ai_17"              "ai_18"              "ai_19"             
##  [61] "ai_20"              "ai_21"              "ai_22"             
##  [64] "ai_23"              "ai_24"              "ai_25"             
##  [67] "ai_26"              "ai_27"              "humanqual_1"       
##  [70] "humanqual_2"        "humanqual_3"        "humanqual_4"       
##  [73] "humanqual_5"        "humanqual_6"        "humanqual_7"       
##  [76] "humanqual_8"        "humanqual_9"        "humanqual_10"      
##  [79] "humanqual_11"       "humanqual_12"       "humanqual_13"      
##  [82] "humanqual_14"       "humanqual_15"       "humanqual_16"      
##  [85] "humanqual_17"       "humanqual_18"       "humanqual_19"      
##  [88] "humanqual_20"       "humanqual_21"       "humanqual_22"      
##  [91] "humanqual_23"       "humanqual_24"       "humanqual_25"      
##  [94] "humanqual_26"       "humanqual_27"       "humanavg_1"        
##  [97] "humanavg_2"         "humanavg_3"         "humanavg_4"        
## [100] "humanavg_5"         "humanavg_6"         "humanavg_7"        
## [103] "humanavg_8"         "humanavg_9"         "humanavg_10"       
## [106] "humanavg_11"        "humanavg_12"        "humanavg_13"       
## [109] "humanavg_14"        "humanavg_15"        "humanavg_16"       
## [112] "humanavg_17"        "humanavg_18"        "humanavg_19"       
## [115] "humanavg_20"        "humanavg_21"        "humanavg_22"       
## [118] "humanavg_23"        "humanavg_24"        "humanavg_25"       
## [121] "humanavg_26"        "humanavg_27"        "humandiff"         
## [124] "compdiff"           "Q4"                 "Q6"                
## [127] "Q8_1"               "Q8_2"               "DO.BR.FL_5"        
## [130] "DO.BL.ai.algorithm" "DO.BL.humans"       "DO.Q.alg"          
## [133] "DO.Q.ai"            "DO.Q.humanavg"      "DO.Q.humanqual"    
## [136] "LocationLatitude"   "LocationLongitude"  "LocationAccuracy"
ai <- a[c(42:68, 129)]
aifirst <- subset(ai, DO.BR.FL_5 == "ai + algorithm|humans")
aifirst <- subset(aifirst, ai_1 != "NA")

alg <- a[c(15:41, 129)]
alg <- subset(alg, alg_1 != "NA")
algfirst <- subset(alg, DO.BR.FL_5 == "ai + algorithm|humans")

recommending movie

t.test(algfirst$alg_1, aifirst$ai_1)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_1 and aifirst$ai_1
## t = 0.86526, df = 418.74, p-value = 0.3874
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.838903  7.303494
## sample estimates:
## mean of x mean of y 
##  63.75248  61.52018
t.test(humfirst$humanqual_1, humavgfirst$humanavg_1)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_1 and humavgfirst$humanavg_1
## t = 4.7097, df = 365.67, p-value = 3.529e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   5.987937 14.572809
## sample estimates:
## mean of x mean of y 
##  74.91579  64.63542
t.test(algfirst$alg_1, humfirst$humanqual_1)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_1 and humfirst$humanqual_1
## t = -4.8057, df = 364.26, p-value = 2.259e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -15.731373  -6.595255
## sample estimates:
## mean of x mean of y 
##  63.75248  74.91579
t.test(algfirst$alg_1, humavgfirst$humanavg_1)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_1 and humavgfirst$humanavg_1
## t = -0.34999, df = 389.88, p-value = 0.7265
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.842850  4.076967
## sample estimates:
## mean of x mean of y 
##  63.75248  64.63542
t.test(a$alg_1, a$humanavg_1)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_1 and a$humanavg_1
## t = -4.6065, df = 761.46, p-value = 4.798e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.813149  -4.753308
## sample estimates:
## mean of x mean of y 
##  59.98718  68.27041

predicting joke funiness

t.test(algfirst$alg_2, aifirst$ai_2)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_2 and aifirst$ai_2
## t = -0.074905, df = 420.75, p-value = 0.9403
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.183919  4.803330
## sample estimates:
## mean of x mean of y 
##  31.45545  31.64574
t.test(humfirst$humanqual_2, humavgfirst$humanavg_2)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_2 and humavgfirst$humanavg_2
## t = 4.7353, df = 379.99, p-value = 3.094e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   7.111815 17.211650
## sample estimates:
## mean of x mean of y 
##  63.02632  50.86458
t.test(algfirst$alg_2, humavgfirst$humanavg_2)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_2 and humavgfirst$humanavg_2
## t = -7.5378, df = 391.66, p-value = 3.353e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -24.47152 -14.34676
## sample estimates:
## mean of x mean of y 
##  31.45545  50.86458

recommending restaurant

t.test(algfirst$alg_3, aifirst$ai_3)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_3 and aifirst$ai_3
## t = 0.9673, df = 420.2, p-value = 0.334
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.393571  7.031941
## sample estimates:
## mean of x mean of y 
##  65.72277  63.40359
t.test(humfirst$humanqual_3, humavgfirst$humanavg_3)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_3 and humavgfirst$humanavg_3
## t = 4.93, df = 365.04, p-value = 1.251e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   6.238613 14.518185
## sample estimates:
## mean of x mean of y 
##  77.32632  66.94792
t.test(algfirst$alg_3, humfirst$humanqual_3)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_3 and humfirst$humanqual_3
## t = -5.3401, df = 371.1, p-value = 1.623e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -15.876322  -7.330765
## sample estimates:
## mean of x mean of y 
##  65.72277  77.32632
t.test(algfirst$alg_3, humavgfirst$humanavg_3)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_3 and humavgfirst$humanavg_3
## t = -0.51578, df = 391.74, p-value = 0.6063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.895102  3.444813
## sample estimates:
## mean of x mean of y 
##  65.72277  66.94792
t.test(a$alg_3, a$humanavg_3)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_3 and a$humanavg_3
## t = -5.0657, df = 761.77, p-value = 5.111e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.342502  -5.448131
## sample estimates:
## mean of x mean of y 
##  61.51795  70.41327

recommending music

t.test(algfirst$alg_4, aifirst$ai_4)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_4 and aifirst$ai_4
## t = -0.16773, df = 413.4, p-value = 0.8669
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.497944  4.633450
## sample estimates:
## mean of x mean of y 
##  62.88614  63.31839
t.test(humfirst$humanqual_4, humavgfirst$humanavg_4)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_4 and humavgfirst$humanavg_4
## t = 5.5604, df = 374.27, p-value = 5.128e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.242321 17.261078
## sample estimates:
## mean of x mean of y 
##  73.66316  60.91146
t.test(algfirst$alg_4, humfirst$humanqual_4)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_4 and humfirst$humanqual_4
## t = -4.4176, df = 375.05, p-value = 1.308e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -15.573976  -5.980062
## sample estimates:
## mean of x mean of y 
##  62.88614  73.66316
t.test(algfirst$alg_4, humavgfirst$humanavg_4)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_4 and humavgfirst$humanavg_4
## t = 0.76691, df = 389.57, p-value = 0.4436
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.08766  7.03702
## sample estimates:
## mean of x mean of y 
##  62.88614  60.91146
t.test(a$alg_4, a$humanavg_4)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_4 and a$humanavg_4
## t = -2.7836, df = 762.37, p-value = 0.00551
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.849195 -1.529612
## sample estimates:
## mean of x mean of y 
##  59.37692  64.56633

gift

t.test(algfirst$alg_5, aifirst$ai_5)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_5 and aifirst$ai_5
## t = 0.09132, df = 420.58, p-value = 0.9273
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.201962  5.708866
## sample estimates:
## mean of x mean of y 
##  50.02475  49.77130
t.test(humfirst$humanqual_5, humavgfirst$humanavg_5)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_5 and humavgfirst$humanavg_5
## t = 9.2411, df = 355.4, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  17.60002 27.11642
## sample estimates:
## mean of x mean of y 
##  75.38947  53.03125
t.test(aifirst$ai_5, humfirst$humanqual_5)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_5 and humfirst$humanqual_5
## t = -10.554, df = 396.17, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -30.39025 -20.84610
## sample estimates:
## mean of x mean of y 
##  49.77130  75.38947
t.test(aifirst$ai_5, humavgfirst$humanavg_5)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_5 and humavgfirst$humanavg_5
## t = -1.1933, df = 410.98, p-value = 0.2334
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.630073  2.110174
## sample estimates:
## mean of x mean of y 
##  49.77130  53.03125
t.test(a$ai_5, a$humanavg_5)
## 
##  Welch Two Sample t-test
## 
## data:  a$ai_5 and a$humanavg_5
## t = -6.3146, df = 805.23, p-value = 4.475e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -16.003706  -8.413499
## sample estimates:
## mean of x mean of y 
##  45.39089  57.59949

romantic

t.test(algfirst$alg_6, aifirst$ai_6)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_6 and aifirst$ai_6
## t = 2.4404, df = 414.22, p-value = 0.01509
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   1.227215 11.390109
## sample estimates:
## mean of x mean of y 
##  39.03960  32.73094
t.test(humfirst$humanqual_6, humavgfirst$humanavg_6)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_6 and humavgfirst$humanavg_6
## t = 6.918, df = 376.01, p-value = 1.98e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  13.71810 24.61282
## sample estimates:
## mean of x mean of y 
##  57.88421  38.71875
t.test(aifirst$ai_6, humavgfirst$humanavg_6)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_6 and humavgfirst$humanavg_6
## t = -2.2201, df = 389.6, p-value = 0.02699
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.2905004  -0.6851161
## sample estimates:
## mean of x mean of y 
##  32.73094  38.71875
t.test(algfirst$alg_6, humfirst$humanqual_6)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_6 and humfirst$humanqual_6
## t = -7.0807, df = 390, p-value = 6.725e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -24.07710 -13.61211
## sample estimates:
## mean of x mean of y 
##  39.03960  57.88421
t.test(algfirst$alg_6, humavgfirst$humanavg_6)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_6 and humavgfirst$humanavg_6
## t = 0.11405, df = 388.09, p-value = 0.9093
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.210190  5.851898
## sample estimates:
## mean of x mean of y 
##  39.03960  38.71875
t.test(a$alg_6, a$humanavg_6)
## 
##  Welch Two Sample t-test
## 
## data:  a$alg_6 and a$humanavg_6
## t = -1.7801, df = 780, p-value = 0.07546
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -7.4639415  0.3648311
## sample estimates:
## mean of x mean of y 
##  37.28718  40.83673

news article

t.test(algfirst$alg_7, aifirst$ai_7)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_7 and aifirst$ai_7
## t = -0.89392, df = 419.26, p-value = 0.3719
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -7.692826  2.883165
## sample estimates:
## mean of x mean of y 
##  36.65347  39.05830
t.test(humfirst$humanqual_7, humavgfirst$humanavg_7)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_7 and humavgfirst$humanavg_7
## t = 13.476, df = 360.78, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  28.03651 37.61755
## sample estimates:
## mean of x mean of y 
##  76.89474  44.06771
t.test(aifirst$ai_7, humavgfirst$humanavg_7)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_7 and humavgfirst$humanavg_7
## t = -1.8767, df = 408.51, p-value = 0.06127
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -10.2564869   0.2376621
## sample estimates:
## mean of x mean of y 
##  39.05830  44.06771

disease treatment

t.test(algfirst$alg_8, aifirst$ai_8)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_8 and aifirst$ai_8
## t = 1.6531, df = 420.56, p-value = 0.09905
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.873384 10.114116
## sample estimates:
## mean of x mean of y 
##  46.30198  41.68161
t.test(humfirst$humanqual_8, humavgfirst$humanavg_8)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_8 and humavgfirst$humanavg_8
## t = 17.249, df = 365.23, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  41.76487 52.51311
## sample estimates:
## mean of x mean of y 
##  71.54737  24.40838
t.test(aifirst$ai_8, humavgfirst$humanavg_8)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_8 and humavgfirst$humanavg_8
## t = 6.006, df = 401.87, p-value = 4.261e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  11.61932 22.92715
## sample estimates:
## mean of x mean of y 
##  41.68161  24.40838
t.test(algfirst$alg_8, humavgfirst$humanavg_8)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_8 and humavgfirst$humanavg_8
## t = 7.519, df = 388.36, p-value = 3.86e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  16.16878 27.61842
## sample estimates:
## mean of x mean of y 
##  46.30198  24.40838
t.test(algfirst$alg_8, humfirst$humanqual_8)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_8 and humfirst$humanqual_8
## t = -9.536, df = 385.05, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -30.45052 -20.04025
## sample estimates:
## mean of x mean of y 
##  46.30198  71.54737

marketing strategy

t.test(algfirst$alg_9, aifirst$ai_9)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_9 and aifirst$ai_9
## t = 1.8367, df = 419.84, p-value = 0.06696
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.323578  9.544197
## sample estimates:
## mean of x mean of y 
##  57.62376  53.01345
t.test(humfirst$humanqual_9, humavgfirst$humanavg_9)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_9 and humavgfirst$humanavg_9
## t = 12.786, df = 361.56, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  27.36529 37.31300
## sample estimates:
## mean of x mean of y 
##  69.05789  36.71875
t.test(aifirst$ai_9, humavgfirst$humanavg_9)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_9 and humavgfirst$humanavg_9
## t = 6.1714, df = 396.3, p-value = 1.674e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  11.10384 21.48557
## sample estimates:
## mean of x mean of y 
##  53.01345  36.71875
t.test(algfirst$alg_9, humavgfirst$humanavg_9)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_9 and humavgfirst$humanavg_9
## t = 7.7885, df = 386.55, p-value = 6.3e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.62780 26.18222
## sample estimates:
## mean of x mean of y 
##  57.62376  36.71875
t.test(algfirst$alg_9, humfirst$humanqual_9)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_9 and humfirst$humanqual_9
## t = -4.7783, df = 385.32, p-value = 2.518e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -16.138922  -6.729343
## sample estimates:
## mean of x mean of y 
##  57.62376  69.05789

driving a car

t.test(algfirst$alg_10, aifirst$ai_10)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_10 and aifirst$ai_10
## t = -0.33973, df = 421.53, p-value = 0.7342
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -7.220777  5.092552
## sample estimates:
## mean of x mean of y 
##  46.12871  47.19283
t.test(humfirst$humanqual_10, humavgfirst$humanavg_10)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_10 and humavgfirst$humanavg_10
## t = 4.8735, df = 358.81, p-value = 1.649e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   6.878091 16.184519
## sample estimates:
## mean of x mean of y 
##  80.50526  68.97396
t.test(aifirst$ai_10, humavgfirst$humanavg_10)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_10 and humavgfirst$humanavg_10
## t = -7.5361, df = 409.78, p-value = 3.133e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -27.46266 -16.09960
## sample estimates:
## mean of x mean of y 
##  47.19283  68.97396

driving a truck

t.test(algfirst$alg_11, aifirst$ai_11)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_11 and aifirst$ai_11
## t = -0.63105, df = 419.23, p-value = 0.5284
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.268846  4.249843
## sample estimates:
## mean of x mean of y 
##  41.85149  43.86099
t.test(humfirst$humanqual_11, humavgfirst$humanavg_11)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_11 and humavgfirst$humanavg_11
## t = 9.035, df = 337.44, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  18.21388 28.35169
## sample estimates:
## mean of x mean of y 
##  79.64737  56.36458
t.test(aifirst$ai_11, humavgfirst$humanavg_11)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_11 and humavgfirst$humanavg_11
## t = -4.0872, df = 412.32, p-value = 5.25e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -18.517240  -6.489954
## sample estimates:
## mean of x mean of y 
##  43.86099  56.36458

airplane

t.test(algfirst$alg_12, aifirst$ai_12)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_12 and aifirst$ai_12
## t = -0.3518, df = 418.85, p-value = 0.7252
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -7.389084  5.145688
## sample estimates:
## mean of x mean of y 
##  43.32673  44.44843
t.test(humfirst$humanqual_12, humavgfirst$humanavg_12)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_12 and humavgfirst$humanavg_12
## t = 17.985, df = 362.34, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  45.35683 56.49361
## sample estimates:
## mean of x mean of y 
##  76.82105  25.89583
t.test(aifirst$ai_12, humavgfirst$humanavg_12)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_12 and humavgfirst$humanavg_12
## t = 5.943, df = 410.1, p-value = 5.984e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  12.41599 24.68920
## sample estimates:
## mean of x mean of y 
##  44.44843  25.89583
t.test(algfirst$alg_12, humfirst$humanqual_12)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_12 and humfirst$humanqual_12
## t = -11.53, df = 369.75, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -39.20667 -27.78197
## sample estimates:
## mean of x mean of y 
##  43.32673  76.82105

driving a subway

t.test(algfirst$alg_13, aifirst$ai_13)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_13 and aifirst$ai_13
## t = -0.47475, df = 418.71, p-value = 0.6352
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -7.851851  4.796885
## sample estimates:
## mean of x mean of y 
##  50.58911  52.11659
t.test(humfirst$humanqual_13, humavgfirst$humanavg_13)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_13 and humavgfirst$humanavg_13
## t = 14.681, df = 368.85, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  37.12751 48.61141
## sample estimates:
## mean of x mean of y 
##  72.96842  30.09896
t.test(aifirst$ai_13, humavgfirst$humanavg_13)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_13 and humavgfirst$humanavg_13
## t = 6.9847, df = 409.89, p-value = 1.159e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.82103 28.21424
## sample estimates:
## mean of x mean of y 
##  52.11659  30.09896
t.test(algfirst$alg_13, humfirst$humanqual_13)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_13 and humfirst$humanqual_13
## t = -7.484, df = 376.89, p-value = 5.137e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -28.25901 -16.49961
## sample estimates:
## mean of x mean of y 
##  50.58911  72.96842

predicting weather

t.test(algfirst$alg_14, aifirst$ai_14)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_14 and aifirst$ai_14
## t = 0.92812, df = 417.87, p-value = 0.3539
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.385867  6.654393
## sample estimates:
## mean of x mean of y 
##  69.42574  67.29148
t.test(humfirst$humanqual_14, humavgfirst$humanavg_14)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_14 and humavgfirst$humanavg_14
## t = 6.4006, df = 378.48, p-value = 4.581e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  11.15491 21.04728
## sample estimates:
## mean of x mean of y 
##  56.20526  40.10417
t.test(aifirst$ai_14, humavgfirst$humanavg_14)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_14 and humavgfirst$humanavg_14
## t = 11.227, df = 392.44, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  22.42656 31.94807
## sample estimates:
## mean of x mean of y 
##  67.29148  40.10417
t.test(algfirst$alg_14, humfirst$humanqual_14)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_14 and humfirst$humanqual_14
## t = 5.5123, df = 388.8, p-value = 6.464e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   8.505084 17.935874
## sample estimates:
## mean of x mean of y 
##  69.42574  56.20526

predicting stock market

t.test(algfirst$alg_15, aifirst$ai_15)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_15 and aifirst$ai_15
## t = 2.2749, df = 422.39, p-value = 0.02341
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   0.7446197 10.2089388
## sample estimates:
## mean of x mean of y 
##  62.77723  57.30045
t.test(humfirst$humanqual_15, humavgfirst$humanavg_15)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_15 and humavgfirst$humanavg_15
## t = 8.4937, df = 378.73, p-value = 4.624e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  16.43321 26.33345
## sample estimates:
## mean of x mean of y 
##  52.21579  30.83246
t.test(algfirst$alg_15, humavgfirst$humanavg_15)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_15 and humavgfirst$humanavg_15
## t = 12.906, df = 387.64, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  27.07844 36.81110
## sample estimates:
## mean of x mean of y 
##  62.77723  30.83246
t.test(algfirst$alg_15, humfirst$humanqual_15)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_15 and humfirst$humanqual_15
## t = 4.3334, df = 388.28, p-value = 1.873e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   5.769618 15.353258
## sample estimates:
## mean of x mean of y 
##  62.77723  52.21579

predicting election

t.test(algfirst$alg_16, aifirst$ai_16)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_16 and aifirst$ai_16
## t = 0.28342, df = 420.71, p-value = 0.777
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.454268  5.955223
## sample estimates:
## mean of x mean of y 
##  52.44554  51.69507
t.test(humfirst$humanqual_16, humavgfirst$humanavg_16)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_16 and humavgfirst$humanavg_16
## t = 4.932, df = 379.95, p-value = 1.219e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   7.195472 16.736436
## sample estimates:
## mean of x mean of y 
##  48.73158  36.76562
t.test(algfirst$alg_16, humavgfirst$humanavg_16)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_16 and humavgfirst$humanavg_16
## t = 6.1439, df = 389.7, p-value = 1.99e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  10.66231 20.69752
## sample estimates:
## mean of x mean of y 
##  52.44554  36.76562
t.test(algfirst$alg_16, humfirst$humanqual_16)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_16 and humfirst$humanqual_16
## t = 1.4508, df = 388.36, p-value = 0.1476
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.318971  8.746902
## sample estimates:
## mean of x mean of y 
##  52.44554  48.73158

predicting employee performance

t.test(algfirst$alg_17, aifirst$ai_17)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_17 and aifirst$ai_17
## t = 0.48905, df = 421.03, p-value = 0.6251
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.799471  6.316320
## sample estimates:
## mean of x mean of y 
##  48.41089  47.15247
t.test(humfirst$humanqual_17, humavgfirst$humanavg_17)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_17 and humavgfirst$humanavg_17
## t = 7.3851, df = 374.6, p-value = 9.969e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  13.46276 23.23318
## sample estimates:
## mean of x mean of y 
##  60.40526  42.05729
t.test(algfirst$alg_17, humavgfirst$humanavg_17)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_17 and humavgfirst$humanavg_17
## t = 2.4283, df = 391.37, p-value = 0.01562
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   1.209532 11.497667
## sample estimates:
## mean of x mean of y 
##  48.41089  42.05729
t.test(algfirst$alg_17, humfirst$humanqual_17)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_17 and humfirst$humanqual_17
## t = -4.8676, df = 387.51, p-value = 1.647e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -16.839120  -7.149625
## sample estimates:
## mean of x mean of y 
##  48.41089  60.40526

predicting student performance

t.test(algfirst$alg_18, aifirst$ai_18)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_18 and aifirst$ai_18
## t = -0.70031, df = 421.66, p-value = 0.4841
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.669221  3.165336
## sample estimates:
## mean of x mean of y 
##  43.39604  45.14798
t.test(humfirst$humanqual_18, humavgfirst$humanavg_18)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_18 and humavgfirst$humanavg_18
## t = 9.3698, df = 358.5, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  17.74097 27.16649
## sample estimates:
## mean of x mean of y 
##  63.05789  40.60417
t.test(algfirst$alg_18, humavgfirst$humanavg_18)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_18 and humavgfirst$humanavg_18
## t = 1.0754, df = 388.8, p-value = 0.2829
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.312251  7.895997
## sample estimates:
## mean of x mean of y 
##  43.39604  40.60417
t.test(algfirst$alg_18, humfirst$humanqual_18)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_18 and humfirst$humanqual_18
## t = -8.5382, df = 380.58, p-value = 3.304e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -24.18969 -15.13402
## sample estimates:
## mean of x mean of y 
##  43.39604  63.05789

predicting recidivism

t.test(algfirst$alg_19, aifirst$ai_19)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_19 and aifirst$ai_19
## t = 1.7037, df = 408.72, p-value = 0.0892
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6859462  9.6037635
## sample estimates:
## mean of x mean of y 
##  40.92079  36.46188
t.test(humfirst$humanqual_19, humavgfirst$humanavg_19)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_19 and humavgfirst$humanavg_19
## t = 7.1545, df = 374.25, p-value = 4.457e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  12.85485 22.59888
## sample estimates:
## mean of x mean of y 
##  56.27895  38.55208
t.test(algfirst$alg_19, humavgfirst$humanavg_19)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_19 and humavgfirst$humanavg_19
## t = 0.8731, df = 391.58, p-value = 0.3831
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.965129  7.702546
## sample estimates:
## mean of x mean of y 
##  40.92079  38.55208
t.test(algfirst$alg_19, humfirst$humanqual_19)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_19 and humfirst$humanqual_19
## t = -5.9931, df = 380.82, p-value = 4.776e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -20.39683 -10.31948
## sample estimates:
## mean of x mean of y 
##  40.92079  56.27895

buy sell stocks

t.test(algfirst$alg_20, aifirst$ai_20)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_20 and aifirst$ai_20
## t = 2.9212, df = 422.8, p-value = 0.003674
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   2.502144 12.795552
## sample estimates:
## mean of x mean of y 
##  63.36634  55.71749
t.test(humfirst$humanqual_20, humavgfirst$humanavg_20)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_20 and humavgfirst$humanavg_20
## t = 10.483, df = 373.06, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  21.40023 31.28234
## sample estimates:
## mean of x mean of y 
##  59.26316  32.92188
t.test(algfirst$alg_20, humavgfirst$humanavg_20)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_20 and humavgfirst$humanavg_20
## t = 11.56, df = 390.36, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  25.26653 35.62239
## sample estimates:
## mean of x mean of y 
##  63.36634  32.92188
t.test(algfirst$alg_20, humfirst$humanqual_20)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_20 and humfirst$humanqual_20
## t = 1.6693, df = 387.98, p-value = 0.09586
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.7294357  8.9357932
## sample estimates:
## mean of x mean of y 
##  63.36634  59.26316

diagnose disease

t.test(algfirst$alg_21, aifirst$ai_21)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_21 and aifirst$ai_21
## t = 0.51386, df = 421.07, p-value = 0.6076
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.996753  6.826083
## sample estimates:
## mean of x mean of y 
##  49.21287  47.79821
t.test(humfirst$humanqual_21, humavgfirst$humanavg_21)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_21 and humavgfirst$humanavg_21
## t = 18.655, df = 371.61, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  43.91889 54.26872
## sample estimates:
## mean of x mean of y 
##  72.00526  22.91146
t.test(aifirst$ai_21, humavgfirst$humanavg_21)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_21 and humavgfirst$humanavg_21
## t = 8.9552, df = 407.91, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  19.42375 30.34974
## sample estimates:
## mean of x mean of y 
##  47.79821  22.91146
t.test(algfirst$alg_21, humfirst$humanqual_21)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_21 and humfirst$humanqual_21
## t = -8.752, df = 385.59, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -27.91272 -17.67206
## sample estimates:
## mean of x mean of y 
##  49.21287  72.00526

hire fire employees

t.test(algfirst$alg_22, aifirst$ai_22)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_22 and aifirst$ai_22
## t = 0.80773, df = 419, p-value = 0.4197
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.817847  6.749206
## sample estimates:
## mean of x mean of y 
##  31.68317  29.71749
t.test(humfirst$humanqual_22, humavgfirst$humanavg_22)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_22 and humavgfirst$humanavg_22
## t = 12.006, df = 361.5, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  25.49692 35.48520
## sample estimates:
## mean of x mean of y 
##  69.64211  39.15104
t.test(aifirst$ai_22, humavgfirst$humanavg_22)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_22 and humavgfirst$humanavg_22
## t = -3.6202, df = 389.55, p-value = 0.0003333
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -14.556793  -4.310313
## sample estimates:
## mean of x mean of y 
##  29.71749  39.15104
t.test(algfirst$alg_22, humfirst$humanqual_22)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_22 and humfirst$humanqual_22
## t = -16.068, df = 387.45, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -42.60379 -33.31408
## sample estimates:
## mean of x mean of y 
##  31.68317  69.64211

giving directions

t.test(algfirst$alg_23, aifirst$ai_23)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_23 and aifirst$ai_23
## t = 0.031045, df = 417.1, p-value = 0.9752
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.69510  3.81369
## sample estimates:
## mean of x mean of y 
##  83.15347  83.09417
t.test(humfirst$humanqual_23, humavgfirst$humanavg_23)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_23 and humavgfirst$humanavg_23
## t = 2.8613, df = 378.47, p-value = 0.004454
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   2.238569 12.074479
## sample estimates:
## mean of x mean of y 
##  71.02632  63.86979
t.test(aifirst$ai_23, humavgfirst$humanavg_23)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_23 and humavgfirst$humanavg_23
## t = 8.9212, df = 369.12, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  14.98695 23.46181
## sample estimates:
## mean of x mean of y 
##  83.09417  63.86979
t.test(algfirst$alg_23, humfirst$humanqual_23)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_23 and humfirst$humanqual_23
## t = 5.2875, df = 359.85, p-value = 2.156e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   7.616719 16.637581
## sample estimates:
## mean of x mean of y 
##  83.15347  71.02632

play piano

t.test(algfirst$alg_24, aifirst$ai_24)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_24 and aifirst$ai_24
## t = -2.0878, df = 390.24, p-value = 0.03747
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.8092417  -0.3545909
## sample estimates:
## mean of x mean of y 
##  67.41584  73.49776
t.test(humfirst$humanqual_24, humavgfirst$humanavg_24)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_24 and humavgfirst$humanavg_24
## t = 13.021, df = 340.28, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  29.98806 40.66008
## sample estimates:
## mean of x mean of y 
##  81.61053  46.28646
t.test(aifirst$ai_24, humavgfirst$humanavg_24)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_24 and humavgfirst$humanavg_24
## t = 9.513, df = 381.5, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  21.58708 32.83552
## sample estimates:
## mean of x mean of y 
##  73.49776  46.28646
t.test(aifirst$ai_24, humfirst$humanqual_24)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_24 and humfirst$humanqual_24
## t = -3.4194, df = 409.21, p-value = 0.0006905
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.776662  -3.448875
## sample estimates:
## mean of x mean of y 
##  73.49776  81.61053

compose song

t.test(algfirst$alg_25, aifirst$ai_25)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_25 and aifirst$ai_25
## t = 0.051985, df = 415.95, p-value = 0.9586
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.561230  5.863365
## sample estimates:
## mean of x mean of y 
##  43.98515  43.83408
t.test(humfirst$humanqual_25, humavgfirst$humanavg_25)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_25 and humavgfirst$humanavg_25
## t = 13.174, df = 357.31, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  31.04479 41.94018
## sample estimates:
## mean of x mean of y 
##  78.77895  42.28646
t.test(aifirst$ai_25, humavgfirst$humanavg_25)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_25 and humavgfirst$humanavg_25
## t = 0.52449, df = 399.53, p-value = 0.6002
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.253219  7.348464
## sample estimates:
## mean of x mean of y 
##  43.83408  42.28646
t.test(algfirst$alg_25, humfirst$humanqual_25)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_25 and humfirst$humanqual_25
## t = -12.78, df = 374.95, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -40.14692 -29.44068
## sample estimates:
## mean of x mean of y 
##  43.98515  78.77895

schedule events

t.test(algfirst$alg_26, aifirst$ai_26)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_26 and aifirst$ai_26
## t = -0.82571, df = 420.13, p-value = 0.4094
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.714024  2.741862
## sample estimates:
## mean of x mean of y 
##  69.00495  70.99103
t.test(humfirst$humanqual_26, humavgfirst$humanavg_26)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_26 and humavgfirst$humanavg_26
## t = 9.4127, df = 355.57, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  17.31261 26.45789
## sample estimates:
## mean of x mean of y 
##  75.98421  54.09896
t.test(aifirst$ai_26, humavgfirst$humanavg_26)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_26 and humavgfirst$humanavg_26
## t = 6.7712, df = 400.53, p-value = 4.564e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  11.98774 21.79641
## sample estimates:
## mean of x mean of y 
##  70.99103  54.09896
t.test(algfirst$alg_26, humfirst$humanqual_26)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_26 and humfirst$humanqual_26
## t = -3.1313, df = 378.78, p-value = 0.001876
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.361835  -2.596685
## sample estimates:
## mean of x mean of y 
##  69.00495  75.98421

analyze data

t.test(algfirst$alg_27, aifirst$ai_27)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_27 and aifirst$ai_27
## t = 1.6922, df = 417.22, p-value = 0.09136
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.5147908  6.8847238
## sample estimates:
## mean of x mean of y 
##  82.05941  78.87444
t.test(humfirst$humanqual_27, humavgfirst$humanavg_27)
## 
##  Welch Two Sample t-test
## 
## data:  humfirst$humanqual_27 and humavgfirst$humanavg_27
## t = 9.1001, df = 376.09, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  18.57505 28.81475
## sample estimates:
## mean of x mean of y 
##  65.71053  42.01562
t.test(aifirst$ai_27, humavgfirst$humanavg_27)
## 
##  Welch Two Sample t-test
## 
## data:  aifirst$ai_27 and humavgfirst$humanavg_27
## t = 15.277, df = 364.28, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  32.11429 41.60334
## sample estimates:
## mean of x mean of y 
##  78.87444  42.01562
t.test(algfirst$alg_27, humfirst$humanqual_27)
## 
##  Welch Two Sample t-test
## 
## data:  algfirst$alg_27 and humfirst$humanqual_27
## t = 7.7057, df = 341.79, p-value = 1.426e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  12.17572 20.52204
## sample estimates:
## mean of x mean of y 
##  82.05941  65.71053

Correlations with task ratings

setwd("~/Documents/Dropbox/Research/Adrian")
a<-read.csv ("algorithm task ratings.csv", header=T, sep=",")

names(a)
##   [1] "alg_1"         "alg_2"         "alg_3"         "alg_4"        
##   [5] "alg_5"         "alg_6"         "alg_7"         "alg_8"        
##   [9] "alg_9"         "alg_10"        "alg_11"        "alg_12"       
##  [13] "alg_13"        "alg_14"        "alg_15"        "alg_16"       
##  [17] "alg_17"        "alg_18"        "alg_19"        "alg_20"       
##  [21] "alg_21"        "alg_22"        "alg_23"        "alg_24"       
##  [25] "alg_25"        "alg_26"        "alg_27"        "obj_1"        
##  [29] "obj_2"         "obj_3"         "obj_4"         "obj_5"        
##  [33] "obj_6"         "obj_7"         "obj_8"         "obj_9"        
##  [37] "obj_10"        "obj_11"        "obj_12"        "obj_13"       
##  [41] "obj_14"        "obj_15"        "obj_16"        "obj_17"       
##  [45] "obj_18"        "obj_19"        "obj_20"        "obj_21"       
##  [49] "obj_22"        "obj_23"        "obj_24"        "obj_25"       
##  [53] "obj_26"        "obj_27"        "cons_1"        "cons_2"       
##  [57] "cons_3"        "cons_4"        "cons_5"        "cons_6"       
##  [61] "cons_7"        "cons_8"        "cons_9"        "cons_10"      
##  [65] "cons_11"       "cons_12"       "cons_13"       "cons_14"      
##  [69] "cons_15"       "cons_16"       "cons_17"       "cons_18"      
##  [73] "cons_19"       "cons_20"       "cons_21"       "cons_22"      
##  [77] "cons_23"       "cons_24"       "cons_25"       "cons_26"      
##  [81] "cons_27"       "exp_1"         "exp_2"         "exp_3"        
##  [85] "exp_4"         "exp_5"         "exp_6"         "exp_7"        
##  [89] "exp_8"         "exp_9"         "exp_10"        "exp_11"       
##  [93] "exp_12"        "exp_13"        "exp_14"        "exp_15"       
##  [97] "exp_16"        "exp_17"        "exp_18"        "exp_19"       
## [101] "exp_20"        "exp_21"        "exp_22"        "exp_23"       
## [105] "exp_24"        "exp_25"        "exp_26"        "exp_27"       
## [109] "alreadyalg_1"  "alreadyalg_2"  "alreadyalg_3"  "alreadyalg_4" 
## [113] "alreadyalg_5"  "alreadyalg_6"  "alreadyalg_7"  "alreadyalg_8" 
## [117] "alreadyalg_9"  "alreadyalg_10" "alreadyalg_11" "alreadyalg_12"
## [121] "alreadyalg_13" "alreadyalg_14" "alreadyalg_15" "alreadyalg_16"
## [125] "alreadyalg_17" "alreadyalg_18" "alreadyalg_19" "alreadyalg_20"
## [129] "alreadyalg_21" "alreadyalg_22" "alreadyalg_23" "alreadyalg_24"
## [133] "alreadyalg_25" "alreadyalg_26" "alreadyalg_27"
trust<-a[c(1:27)]
obj<-a[c(28:54)]
cons<-a[c(55:81)]
exp<-a[c(82:108)]
alr<-a[c(109:135)]

trustlong <- reshape(trust, 
  varying = c("alg_1", "alg_2", "alg_3", "alg_4", "alg_5", "alg_6", "alg_7", "alg_8", "alg_9", "alg_10", "alg_11", "alg_12", "alg_13", "alg_14", "alg_15", "alg_16", "alg_17", "alg_18", "alg_19", "alg_20", "alg_21", "alg_22", "alg_23", "alg_24", "alg_25", "alg_26", "alg_27"), 
  v.names = "trust",
  timevar = "task", 
  times = c(1:27), 
  direction = "long")

objlong <- reshape(obj, 
  varying = c("obj_1", "obj_2", "obj_3", "obj_4", "obj_5", "obj_6", "obj_7", "obj_8", "obj_9", "obj_10", "obj_11", "obj_12", "obj_13", "obj_14", "obj_15", "obj_16", "obj_17", "obj_18", "obj_19", "obj_20", "obj_21", "obj_22", "obj_23", "obj_24", "obj_25", "obj_26", "obj_27"), 
  v.names = "obj",
  timevar = "task", 
  times = c(1:27), 
  direction = "long")

conslong <- reshape(cons, 
  varying = c("cons_1", "cons_2", "cons_3", "cons_4", "cons_5", "cons_6", "cons_7", "cons_8", "cons_9", "cons_10", "cons_11", "cons_12", "cons_13", "cons_14", "cons_15", "cons_16", "cons_17", "cons_18", "cons_19", "cons_20", "cons_21", "cons_22", "cons_23", "cons_24", "cons_25", "cons_26", "cons_27"), 
  v.names = "cons",
  timevar = "task", 
  times = c(1:27), 
  direction = "long")

explong <- reshape(exp, 
  varying = c("exp_1", "exp_2", "exp_3", "exp_4", "exp_5", "exp_6", "exp_7", "exp_8", "exp_9", "exp_10", "exp_11", "exp_12", "exp_13", "exp_14", "exp_15", "exp_16", "exp_17", "exp_18", "exp_19", "exp_20", "exp_21", "exp_22", "exp_23", "exp_24", "exp_25", "exp_26", "exp_27"), 
  v.names = "exp",
  timevar = "task", 
  times = c(1:27), 
  direction = "long")

alrlong <- reshape(alr, 
  varying = c("alreadyalg_1", "alreadyalg_2", "alreadyalg_3", "alreadyalg_4", "alreadyalg_5", "alreadyalg_6", "alreadyalg_7", "alreadyalg_8", "alreadyalg_9", "alreadyalg_10", "alreadyalg_11", "alreadyalg_12", "alreadyalg_13", "alreadyalg_14", "alreadyalg_15", "alreadyalg_16", "alreadyalg_17", "alreadyalg_18", "alreadyalg_19", "alreadyalg_20", "alreadyalg_21", "alreadyalg_22", "alreadyalg_23", "alreadyalg_24", "alreadyalg_25", "alreadyalg_26", "alreadyalg_27"), 
  v.names = "alreadyalg",
  timevar = "task", 
  times = c(1:27), 
  direction = "long")

Objective/subjective

cor.test(trustlong$trust, objlong$obj)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$trust and objlong$obj
## t = 11.515, df = 2930, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1731839 0.2424515
## sample estimates:
##       cor 
## 0.2080786

Consequential/inconsequential

cor.test(trustlong$trust, conslong$cons)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$trust and conslong$cons
## t = 6.3856, df = 2714, p-value = 2.002e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.08443728 0.15854800
## sample estimates:
##       cor 
## 0.1216622

Personal experience

cor.test(trustlong$trust, explong$exp)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$trust and explong$exp
## t = 3.0767, df = 2725, p-value = 0.002114
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.02134922 0.09616040
## sample estimates:
##        cor 
## 0.05883742

Belief that people already use algorithms for this

cor.test(trustlong$trust, alrlong$alreadyalg)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$trust and alrlong$alreadyalg
## t = 13.743, df = 2779, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2171330 0.2867465
## sample estimates:
##       cor 
## 0.2522661

Now using gap between algorithms and humans instead of just trust in algorithms

a <- read.csv("AI_algo_2_humans.csv", header = T, sep = ",")
hum <- a[c(69:95)]
hum <- subset(hum, humanqual_1 != "NA")
hum <- head(hum, -25)

humlong <- reshape(hum, varying = c("humanqual_1", "humanqual_2", "humanqual_3", 
    "humanqual_4", "humanqual_5", "humanqual_6", "humanqual_7", "humanqual_8", 
    "humanqual_9", "humanqual_10", "humanqual_11", "humanqual_12", "humanqual_13", 
    "humanqual_14", "humanqual_15", "humanqual_16", "humanqual_17", "humanqual_18", 
    "humanqual_19", "humanqual_20", "humanqual_21", "humanqual_22", "humanqual_23", 
    "humanqual_24", "humanqual_25", "humanqual_26", "humanqual_27"), v.names = "humanqual", 
    timevar = "task", times = c(1:27), direction = "long")
names(humlong)
## [1] "task"      "humanqual" "id"
names(trustlong)
## [1] "task"  "trust" "id"
trustlong$gap <- humlong$humanqual - trustlong$trust

Objective/subjective

cor.test(trustlong$gap, objlong$obj)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$gap and objlong$obj
## t = -9.4875, df = 2930, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2075451 -0.1373019
## sample estimates:
##       cor 
## -0.172643

Consequential/inconsequential

cor.test(trustlong$gap, conslong$cons)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$gap and conslong$cons
## t = -4.9329, df = 2714, p-value = 8.589e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.13141288 -0.05685781
## sample estimates:
##         cor 
## -0.09426752

Personal experience

cor.test(trustlong$gap, explong$exp)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$gap and explong$exp
## t = 0.08751, df = 2725, p-value = 0.9303
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03586122  0.03920927
## sample estimates:
##         cor 
## 0.001676385

Belief that people already use algorithms for this

cor.test(trustlong$gap, alrlong$alreadyalg)
## 
##  Pearson's product-moment correlation
## 
## data:  trustlong$gap and alrlong$alreadyalg
## t = -15.969, df = 2779, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3235893 -0.2554911
## sample estimates:
##        cor 
## -0.2899071