I used the Puerto Rico time series. It looks like ozone levels peak in the spring and drops in late fall/early winter. After accounting for the seasonal fluctuations in ozone levels, there might be a slight increasing trend in ozone levels over time.
## df AIC
## arima(Y, c(2, 0, 2)) 6 365.8447
## arima(Y, c(3, 0, 2)) 7 371.5267
## arima(Y, c(3, 0, 3)) 8 372.0320
## arima(Y, c(1, 0, 0)) 3 372.5920
## arima(Y, c(0, 0, 1)) 3 372.6096
## arima(Y, c(0, 0, 2)) 4 374.4973
## arima(Y, c(2, 0, 0)) 4 374.5905
## arima(Y, c(1, 0, 1)) 4 374.5917
## arima(Y, c(1, 0, 2)) 5 376.2106
## arima(Y, c(2, 0, 1)) 5 376.3971
# remove the seasonal component
PR.noseason <- PR.decomp$x - PR.decomp$seasonal
# perform a simple linear model of Ydeseasoned against time
summary(lm(PR.noseason ~ time(PR.noseason)))$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3347.395504 856.0400529 -3.910326 2.107120e-04
## time(PR.noseason) 1.815204 0.4284572 4.236604 6.796665e-05
# fit a generalized least squares model using the ARMA model
summary(gls(PR.noseason ~ time(PR.noseason), correlation = corARMA(p=2,q=2)))
## Generalized least squares fit by REML
## Model: PR.noseason ~ time(PR.noseason)
## Data: NULL
## AIC BIC logLik
## 465.5457 481.2851 -225.7728
##
## Correlation Structure: ARMA(2,2)
## Formula: ~1
## Parameter estimate(s):
## Phi1 Phi2 Theta1 Theta2
## -0.01940772 0.25889314 0.39676560 0.07987273
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -2931.0499 1461.2618 -2.005835 0.0487
## time(PR.noseason) 1.6068 0.7314 2.196891 0.0313
##
## Correlation:
## (Intr)
## time(PR.noseason) -1
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.8507269 -0.4191124 0.1973152 0.5857927 2.5546680
##
## Residual standard error: 6.504804
## Degrees of freedom: 72 total; 70 residual
## lat long time value
## 1 -21.2 -113.8 1 260
## 2 -18.7 -113.8 1 258
## 3 -16.2 -113.8 1 258
## 4 -13.7 -113.8 1 254
## 5 -11.2 -113.8 1 252
## 6 -8.7 -113.8 1 252
## convUL: For the UTM conversion, automatically detected zone 16.
## convUL: Converting coordinates within the northern hemisphere.
## [1] 12
## Analysis of Variance Table
##
## Response: value
## Df Sum Sq Mean Sq F value Pr(>F)
## X 1 5302 5302 30.2132 5.837e-08 ***
## Y 1 33338 33338 189.9918 < 2.2e-16 ***
## X:Y 1 122 122 0.6927 0.4056
## Residuals 572 100370 175
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized least squares fit by REML
## Model: value ~ X * Y
## Data: myO3
## AIC BIC logLik
## 3555.253 3581.348 -1771.626
##
## Correlation Structure: Gaussian spatial correlation
## Formula: ~X + Y
## Parameter estimate(s):
## range
## 386.1719
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 242.55123 4.334363 55.96007 0.0000
## X -0.00162 0.000448 -3.62177 0.0003
## Y 0.00590 0.001860 3.17274 0.0016
## X:Y 0.00000 0.000000 0.91416 0.3610
##
## Correlation:
## (Intr) X Y
## X 0.978
## Y -0.409 -0.400
## X:Y -0.400 -0.409 0.978
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.3595819 -1.4968214 -0.5698697 1.0149312 4.6283886
##
## Residual standard error: 8.75908
## Degrees of freedom: 576 total; 572 residual
## $fixed
## (Intercept) Diet2 Diet3
## 99.45233 21.25888 40.61424
## Diet4 poly(Time, 2)1 poly(Time, 2)2
## 33.96666 964.36315 69.64777
## Diet2:poly(Time, 2)1 Diet3:poly(Time, 2)1 Diet4:poly(Time, 2)1
## 398.15282 843.53246 536.49581
## Diet2:poly(Time, 2)2 Diet3:poly(Time, 2)2 Diet4:poly(Time, 2)2
## 61.88236 200.25514 12.34270
##
## $random
## $random$Chick
## Time
## 18 -2.2764667
## 16 -3.5044138
## 15 -2.9372945
## 13 -3.0885444
## 9 -2.6979995
## 20 -2.0850454
## 10 -1.7602940
## 8 -1.2514795
## 17 -1.0199655
## 19 -0.6577041
## 4 -0.2158893
## 6 0.1041061
## 11 1.0696130
## 3 1.6511694
## 1 1.6211551
## 12 1.6937982
## 2 2.1798238
## 5 2.6781571
## 14 4.6356132
## 7 5.8616609
## 24 -6.0450239
## 30 -2.5292309
## 22 -2.0369298
## 23 -1.6173524
## 27 -1.0138030
## 28 0.7507881
## 26 1.3649915
## 25 2.2182044
## 29 3.5208625
## 21 5.3874935
## 33 -4.8003480
## 37 -4.0469594
## 36 -1.7172797
## 31 -0.9172652
## 39 -0.2554927
## 38 0.6595190
## 32 1.4940847
## 40 1.9390989
## 34 2.9856523
## 35 4.6589901
## 44 -2.6063238
## 45 -1.5503753
## 43 -0.9376122
## 41 -1.1380645
## 47 -1.0247609
## 49 0.2318008
## 46 0.1738955
## 50 1.4094139
## 42 1.9243765
## 48 3.5176501
## [1] 14.51408
## [1] 0.8558511
## .id V1
## 1 ChickModel.Diet 4789.380
## 2 ChickModel.NoDiet 4842.816
## 3 ChickModel.Diet.AutoCorr 4206.544
## 4 ChickModel.NoDiet.AutoCorr 4245.153
## 5 ChickModel.NoDietTerm 5047.113
##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt LL
## ChickModel.Diet.AutoCorr 15 4207.40 0.00 1 1 -2088.27
## ChickModel.NoDiet.AutoCorr 9 4245.47 38.07 0 1 -2113.58
## ChickModel.Diet 14 4790.13 582.73 0 1 -2380.69
## ChickModel.NoDiet 8 4843.07 635.67 0 1 -2413.41
## ChickModel.NoDietTerm 3 5047.15 839.76 0 1 -2520.56