Repeated Measures for LOT

# Loading the dataset that has been reset into a long version
load("/Users/levibrackman/data.test3.RData")
# Load the psych package
library(psych)
# Creating a new variable that is the mean of all positive purpose LOT
# questions
items <- grep("LOTR[0-9]", names(data.test3), value = TRUE)
scaleKey <- c(1, 1, -1, 1, 1, 1, -1, 1, -1, 1)
data.test3[, items] <- apply(data.test3[, items], 2, as.numeric)
data.test3$LOT <- scoreItems(scaleKey, items = data.test3[, items], delete = FALSE)$score

For lme to work GROUP and ID need to be seen as factors

data.test3$GROUP <- as.factor(data.test3$GROUP)
data.test3$ID <- as.factor(data.test3$ID)

Describe the LOT variable by the GROUP variable

describeBy(data.test3$LOT, group = data.test3$GROUP)
## INDICES: 0
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## A1    1 102 2.29 0.81   2.15    2.21 0.82 1.1 4.3   3.2 0.67    -0.38 0.08
## -------------------------------------------------------- 
## INDICES: 1
##    vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
## A1    1 91 2.12 0.69    2.1    2.04 0.74 1.1   4   2.9 0.84     0.12 0.07
## -------------------------------------------------------- 
## INDICES: 2
##    vars n mean   sd median trimmed  mad min max range skew kurtosis  se
## A1    1 7 2.37 0.53    2.2    2.37 0.15 1.8 3.4   1.6 0.86    -0.71 0.2

Create a plot that visualizes LOT variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
qplot(GROUP, LOT, data = data.test3, geom = "boxplot")
## Error: stat_boxplot requires the following missing aesthetics: y

# Load the nlme package
library(nlme)

Two way repeated measures


with(data.test3, boxplot(LOT ~ wave + GROUP))

plot of chunk unnamed-chunk-5

Graphing the Two-Way Interaction.

# Load the nlme package
library(nlme)

I am not sure if I am doing this right

baseline <- lme(LOT ~ 1, random = ~1 | ID/GROUP/wave, data = data.test3, method = "ML")

LOTPModel <- lme(LOT ~ GROUP, random = ~1 | ID/GROUP/wave, data = data.test3, 
    method = "ML")

LOTP2Model <- lme(LOT ~ GROUP + wave, random = ~1 | ID/GROUP/wave, data = data.test3, 
    method = "ML")

fullModel <- lme(LOT ~ GROUP * wave, random = ~1 | ID/GROUP/wave, data = data.test3, 
    method = "ML")

We again the significance of our models by comparing them from the baseline model using the anova() function.


anova(baseline, LOTPModel, LOTP2Model, fullModel)
##            Model df   AIC   BIC logLik   Test L.Ratio p-value
## baseline       1  5 430.9 447.4 -210.4                       
## LOTPModel      2  7 433.2 456.3 -209.6 1 vs 2   1.653  0.4376
## LOTP2Model     3  8 426.0 452.4 -205.0 2 vs 3   9.255  0.0023
## fullModel      4 10 428.1 461.1 -204.1 3 vs 4   1.847  0.3971
summary(fullModel)
## Warning: NaNs produced
## Linear mixed-effects model fit by maximum likelihood
##  Data: data.test3 
##     AIC   BIC logLik
##   428.1 461.1 -204.1
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:      0.4864
## 
##  Formula: ~1 | GROUP %in% ID
##         (Intercept)
## StdDev:   0.0001006
## 
##  Formula: ~1 | wave %in% GROUP %in% ID
##         (Intercept) Residual
## StdDev:   2.886e-05   0.5349
## 
## Fixed effects: LOT ~ GROUP * wave 
##               Value Std.Error  DF t-value p-value
## (Intercept)  2.4849    0.1550 105  16.030  0.0000
## GROUP1       0.0696    0.2222   0   0.313     NaN
## GROUP2       0.2076    0.5820  88   0.357  0.7221
## wave        -0.0881    0.0717 105  -1.229  0.2217
## GROUP1:wave -0.1379    0.1039 105  -1.327  0.1873
## GROUP2:wave -0.1276    0.3065 105  -0.416  0.6780
##  Correlation: 
##             (Intr) GROUP1 GROUP2 wave   GROUP1:
## GROUP1      -0.696                             
## GROUP2      -0.266  0.185                      
## wave        -0.804  0.561  0.214               
## GROUP1:wave  0.563 -0.807 -0.150 -0.690        
## GROUP2:wave  0.188 -0.131 -0.815 -0.234  0.161 
## 
## Standardized Within-Group Residuals:
##     Min      Q1     Med      Q3     Max 
## -1.8461 -0.5688 -0.1207  0.4400  2.6755 
## 
## Number of Observations: 200
## Number of Groups: 
##                      ID           GROUP %in% ID wave %in% GROUP %in% ID 
##                      90                      91                     199