Loading the libraries

library("ggplot2")
## Warning: package 'ggplot2' was built under R version 3.2.5
library("gridExtra")
## Warning: package 'gridExtra' was built under R version 3.2.5
library("R.utils")
## Warning: package 'R.utils' was built under R version 3.2.5
## Loading required package: R.oo
## Warning: package 'R.oo' was built under R version 3.2.5
## Loading required package: R.methodsS3
## Warning: package 'R.methodsS3' was built under R version 3.2.5
## R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
## 
## Attaching package: 'R.oo'
## The following objects are masked from 'package:methods':
## 
##     getClasses, getMethods
## The following objects are masked from 'package:base':
## 
##     attach, detach, gc, load, save
## R.utils v2.5.0 (2016-11-07) successfully loaded. See ?R.utils for help.
## 
## Attaching package: 'R.utils'
## The following object is masked from 'package:utils':
## 
##     timestamp
## The following objects are masked from 'package:base':
## 
##     cat, commandArgs, getOption, inherits, isOpen, parse, warnings

Loading the Storm data

stormdata = read.csv("C:/Users/sdurski/Desktop/coursera/course5/course 5 project/repdata_data_StormData.csv ",sep = ",")

Printing out the dimension of the storm data

dim(stormdata)
## [1] 902297     37

Check the internal structure of storm data

str(stormdata)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436774 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

Summary of Data

summary(stormdata)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   569   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588294

Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

Select the storm data to required coluns

event <- stormdata[, c("BGN_DATE", "EVTYPE", "FATALITIES", "INJURIES", 
    "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")]

Selecting fatalities and injuries event

eventhealth <- subset(event, !event$FATALITIES == 0 & !event$INJURIES == 
    0, select = c(EVTYPE, FATALITIES, INJURIES))

Prepare data to present harmful events of population health

death <- aggregate(eventhealth$FATALITIES, by = list(eventhealth$EVTYPE), 
    FUN = sum)

Rename death columns

colnames(death) <- c("EVENTTYPE", "FATALITIES")

Defining an injusry objective

injury <- aggregate(eventhealth$INJURIES, by = list(eventhealth$EVTYPE), 
    FUN = sum)

Rename injury Columns

colnames(injury) <- c("EVENTTYPE", "INJURIES")

Redefining death objective

death <- death[order(death$FATALITIES, decreasing = TRUE), 
    ][1:5, ]

Redefining injusry objective

injury <- injury[order(injury$INJURIES, decreasing = TRUE), 
    ][1:5, ]

Generate the top 5 couse of fatalities and injuries plots Creating death plot

deathplot <- ggplot() + geom_bar(data = death, aes(x = EVENTTYPE, 
    y = FATALITIES, fill = interaction(FATALITIES, EVENTTYPE)), stat = "identity", 
    show.legend = F) + theme(axis.text.x = element_text(angle = 20, hjust = 1)) + 
    xlab("Harmful Events") + ylab("# of fatailities") + ggtitle("Events Causing Fatalities") + 
    theme(axis.text.x = element_text(angle = 20, hjust = 1))

creating injury plot

injuryplot <- ggplot() + geom_bar(data = injury, aes(x = EVENTTYPE, y = INJURIES, 
    fill = interaction(INJURIES, EVENTTYPE)), stat = "identity", show.legend = F) + 
    theme(axis.text.x = element_text(angle = 20, hjust = 1)) + xlab("Harmful Events") + 
    ylab("# of Injuries") + ggtitle("Events Causing Injuries") + 
    theme(axis.text.x = element_text(angle = 20, hjust = 1))

Ploting deathplot and injuryplot

grid.arrange(deathplot, injuryplot, ncol = 2)

By examing the plots above the tornado is the major cause of population health of fatalites and injuries.

Across the United States, which types of events have the greatest economic consequences?

Data processing of selecting data for property damage and crop Damage

economic <- subset(event, !event$PROPDMG == 0 & !event$CROPDMG == 
    0, select = c(EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP))

Prepare data to present harmful events of economic damages

Selecting required entries for economy

economic <- subset(economic, economic$PROPDMGEXP == "K" | economic$PROPDMGEXP == 
    "k" | economic$PROPDMGEXP == "M" | economic$PROPDMGEXP == "m" | 
    economic$PROPDMGEXP == "B" | economic$PROPDMGEXP == "b")

economic <- subset(economic, economic$CROPDMGEXP == "K" | economic$CROPDMGEXP == 
    "k" | economic$CROPDMGEXP == "M" | economic$CROPDMGEXP == "m" | 
    economic$CROPDMGEXP == "B" | economic$CROPDMGEXP == "b")

Converting economic values to number

economic$PROPDMGEXP <- gsub("m", 1e+06, economic$PROPDMGEXP, ignore.case = TRUE)
economic$PROPDMGEXP <- gsub("k", 1000, economic$PROPDMGEXP, ignore.case = TRUE)
economic$PROPDMGEXP <- gsub("b", 1e+09, economic$PROPDMGEXP, ignore.case = TRUE)
economic$PROPDMGEXP <- as.numeric(economic$PROPDMGEXP)
economic$CROPDMGEXP <- gsub("m", 1e+06, economic$CROPDMGEXP, ignore.case = TRUE)
economic$CROPDMGEXP <- gsub("k", 1000, economic$CROPDMGEXP, ignore.case = TRUE)
economic$CROPDMGEXP <- gsub("b", 1e+09, economic$CROPDMGEXP, ignore.case = TRUE)
economic$CROPDMGEXP <- as.numeric(economic$CROPDMGEXP)
economic$PROPDMGEXP <- as.numeric(economic$PROPDMGEXP)
economic$TOTALDMG <- (economic$CROPDMG * economic$CROPDMGEXP) + 
    (economic$PROPDMG * economic$PROPDMGEXP)

Sum the damages by each event

economic <- aggregate(economic$TOTALDMG, by = list(economic$EVTYPE), 
    FUN = sum)

Rename economic colunms

colnames(economic) <- c("EVTYPE", "TOTALDMG")

Order the damage cost of the five columns

economic <- economic[order(economic$TOTALDMG, decreasing = TRUE), 
    ]
economic <- economic[1:5, ]

Plot the economic Damage

ggplot() + geom_bar(data = economic, aes(x = EVTYPE, y = TOTALDMG, fill = interaction(TOTALDMG, 
    EVTYPE)), stat = "identity", show.legend = F) + theme(axis.text.x = element_text(angle = 30, 
    hjust = 1)) + xlab("Type of Event") + ylab("# of Damage") +ggtitle("Events Causing Damage")

Comment: Base on the plot, flood is the cause of damage. In conclusion, Tornado is harmful with respect to pupulation while flood have the major economic consequences.