Loading the libraries
library("ggplot2")
## Warning: package 'ggplot2' was built under R version 3.2.5
library("gridExtra")
## Warning: package 'gridExtra' was built under R version 3.2.5
library("R.utils")
## Warning: package 'R.utils' was built under R version 3.2.5
## Loading required package: R.oo
## Warning: package 'R.oo' was built under R version 3.2.5
## Loading required package: R.methodsS3
## Warning: package 'R.methodsS3' was built under R version 3.2.5
## R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
##
## Attaching package: 'R.oo'
## The following objects are masked from 'package:methods':
##
## getClasses, getMethods
## The following objects are masked from 'package:base':
##
## attach, detach, gc, load, save
## R.utils v2.5.0 (2016-11-07) successfully loaded. See ?R.utils for help.
##
## Attaching package: 'R.utils'
## The following object is masked from 'package:utils':
##
## timestamp
## The following objects are masked from 'package:base':
##
## cat, commandArgs, getOption, inherits, isOpen, parse, warnings
Loading the Storm data
stormdata = read.csv("C:/Users/sdurski/Desktop/coursera/course5/course 5 project/repdata_data_StormData.csv ",sep = ",")
Printing out the dimension of the storm data
dim(stormdata)
## [1] 902297 37
Check the internal structure of storm data
str(stormdata)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436774 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
Summary of Data
summary(stormdata)
## STATE__ BGN_DATE BGN_TIME
## Min. : 1.0 5/25/2011 0:00:00: 1202 12:00:00 AM: 10163
## 1st Qu.:19.0 4/27/2011 0:00:00: 1193 06:00:00 PM: 7350
## Median :30.0 6/9/2011 0:00:00 : 1030 04:00:00 PM: 7261
## Mean :31.2 5/30/2004 0:00:00: 1016 05:00:00 PM: 6891
## 3rd Qu.:45.0 4/4/2011 0:00:00 : 1009 12:00:00 PM: 6703
## Max. :95.0 4/2/2006 0:00:00 : 981 03:00:00 PM: 6700
## (Other) :895866 (Other) :857229
## TIME_ZONE COUNTY COUNTYNAME STATE
## CST :547493 Min. : 0.0 JEFFERSON : 7840 TX : 83728
## EST :245558 1st Qu.: 31.0 WASHINGTON: 7603 KS : 53440
## MST : 68390 Median : 75.0 JACKSON : 6660 OK : 46802
## PST : 28302 Mean :100.6 FRANKLIN : 6256 MO : 35648
## AST : 6360 3rd Qu.:131.0 LINCOLN : 5937 IA : 31069
## HST : 2563 Max. :873.0 MADISON : 5632 NE : 30271
## (Other): 3631 (Other) :862369 (Other):621339
## EVTYPE BGN_RANGE BGN_AZI
## HAIL :288661 Min. : 0.000 :547332
## TSTM WIND :219940 1st Qu.: 0.000 N : 86752
## THUNDERSTORM WIND: 82563 Median : 0.000 W : 38446
## TORNADO : 60652 Mean : 1.484 S : 37558
## FLASH FLOOD : 54277 3rd Qu.: 1.000 E : 33178
## FLOOD : 25326 Max. :3749.000 NW : 24041
## (Other) :170878 (Other):134990
## BGN_LOCATI END_DATE END_TIME
## :287743 :243411 :238978
## COUNTYWIDE : 19680 4/27/2011 0:00:00: 1214 06:00:00 PM: 9802
## Countywide : 993 5/25/2011 0:00:00: 1196 05:00:00 PM: 8314
## SPRINGFIELD : 843 6/9/2011 0:00:00 : 1021 04:00:00 PM: 8104
## SOUTH PORTION: 810 4/4/2011 0:00:00 : 1007 12:00:00 PM: 7483
## NORTH PORTION: 784 5/30/2004 0:00:00: 998 11:59:00 PM: 7184
## (Other) :591444 (Other) :653450 (Other) :622432
## COUNTY_END COUNTYENDN END_RANGE END_AZI
## Min. :0 Mode:logical Min. : 0.0000 :724837
## 1st Qu.:0 NA's:902297 1st Qu.: 0.0000 N : 28082
## Median :0 Median : 0.0000 S : 22510
## Mean :0 Mean : 0.9862 W : 20119
## 3rd Qu.:0 3rd Qu.: 0.0000 E : 20047
## Max. :0 Max. :925.0000 NE : 14606
## (Other): 72096
## END_LOCATI LENGTH WIDTH
## :499225 Min. : 0.0000 Min. : 0.000
## COUNTYWIDE : 19731 1st Qu.: 0.0000 1st Qu.: 0.000
## SOUTH PORTION : 833 Median : 0.0000 Median : 0.000
## NORTH PORTION : 780 Mean : 0.2301 Mean : 7.503
## CENTRAL PORTION: 617 3rd Qu.: 0.0000 3rd Qu.: 0.000
## SPRINGFIELD : 575 Max. :2315.0000 Max. :4400.000
## (Other) :380536
## F MAG FATALITIES INJURIES
## Min. :0.0 Min. : 0.0 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.0 1st Qu.: 0.0 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :1.0 Median : 50.0 Median : 0.0000 Median : 0.0000
## Mean :0.9 Mean : 46.9 Mean : 0.0168 Mean : 0.1557
## 3rd Qu.:1.0 3rd Qu.: 75.0 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :5.0 Max. :22000.0 Max. :583.0000 Max. :1700.0000
## NA's :843563
## PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## Min. : 0.00 :465934 Min. : 0.000 :618413
## 1st Qu.: 0.00 K :424665 1st Qu.: 0.000 K :281832
## Median : 0.00 M : 11330 Median : 0.000 M : 1994
## Mean : 12.06 0 : 216 Mean : 1.527 k : 21
## 3rd Qu.: 0.50 B : 40 3rd Qu.: 0.000 0 : 19
## Max. :5000.00 5 : 28 Max. :990.000 B : 9
## (Other): 84 (Other): 9
## WFO STATEOFFIC
## :142069 :248769
## OUN : 17393 TEXAS, North : 12193
## JAN : 13889 ARKANSAS, Central and North Central: 11738
## LWX : 13174 IOWA, Central : 11345
## PHI : 12551 KANSAS, Southwest : 11212
## TSA : 12483 GEORGIA, North and Central : 11120
## (Other):690738 (Other) :595920
## ZONENAMES
## :594029
## :205988
## GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M : 639
## GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA : 592
## JEFFERSON - JEFFERSON : 303
## MADISON - MADISON : 302
## (Other) :100444
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_
## Min. : 0 Min. :-14451 Min. : 0 Min. :-14455
## 1st Qu.:2802 1st Qu.: 7247 1st Qu.: 0 1st Qu.: 0
## Median :3540 Median : 8707 Median : 0 Median : 0
## Mean :2875 Mean : 6940 Mean :1452 Mean : 3509
## 3rd Qu.:4019 3rd Qu.: 9605 3rd Qu.:3549 3rd Qu.: 8735
## Max. :9706 Max. : 17124 Max. :9706 Max. :106220
## NA's :47 NA's :40
## REMARKS REFNUM
## :287433 Min. : 1
## : 24013 1st Qu.:225575
## Trees down.\n : 1110 Median :451149
## Several trees were blown down.\n : 569 Mean :451149
## Trees were downed.\n : 446 3rd Qu.:676723
## Large trees and power lines were blown down.\n: 432 Max. :902297
## (Other) :588294
Select the storm data to required coluns
event <- stormdata[, c("BGN_DATE", "EVTYPE", "FATALITIES", "INJURIES",
"PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")]
Selecting fatalities and injuries event
eventhealth <- subset(event, !event$FATALITIES == 0 & !event$INJURIES ==
0, select = c(EVTYPE, FATALITIES, INJURIES))
Prepare data to present harmful events of population health
death <- aggregate(eventhealth$FATALITIES, by = list(eventhealth$EVTYPE),
FUN = sum)
Rename death columns
colnames(death) <- c("EVENTTYPE", "FATALITIES")
Defining an injusry objective
injury <- aggregate(eventhealth$INJURIES, by = list(eventhealth$EVTYPE),
FUN = sum)
Rename injury Columns
colnames(injury) <- c("EVENTTYPE", "INJURIES")
Redefining death objective
death <- death[order(death$FATALITIES, decreasing = TRUE),
][1:5, ]
Redefining injusry objective
injury <- injury[order(injury$INJURIES, decreasing = TRUE),
][1:5, ]
Generate the top 5 couse of fatalities and injuries plots Creating death plot
deathplot <- ggplot() + geom_bar(data = death, aes(x = EVENTTYPE,
y = FATALITIES, fill = interaction(FATALITIES, EVENTTYPE)), stat = "identity",
show.legend = F) + theme(axis.text.x = element_text(angle = 20, hjust = 1)) +
xlab("Harmful Events") + ylab("# of fatailities") + ggtitle("Events Causing Fatalities") +
theme(axis.text.x = element_text(angle = 20, hjust = 1))
creating injury plot
injuryplot <- ggplot() + geom_bar(data = injury, aes(x = EVENTTYPE, y = INJURIES,
fill = interaction(INJURIES, EVENTTYPE)), stat = "identity", show.legend = F) +
theme(axis.text.x = element_text(angle = 20, hjust = 1)) + xlab("Harmful Events") +
ylab("# of Injuries") + ggtitle("Events Causing Injuries") +
theme(axis.text.x = element_text(angle = 20, hjust = 1))
Ploting deathplot and injuryplot
grid.arrange(deathplot, injuryplot, ncol = 2)
By examing the plots above the tornado is the major cause of population health of fatalites and injuries.
Data processing of selecting data for property damage and crop Damage
economic <- subset(event, !event$PROPDMG == 0 & !event$CROPDMG ==
0, select = c(EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP))
Prepare data to present harmful events of economic damages
Selecting required entries for economy
economic <- subset(economic, economic$PROPDMGEXP == "K" | economic$PROPDMGEXP ==
"k" | economic$PROPDMGEXP == "M" | economic$PROPDMGEXP == "m" |
economic$PROPDMGEXP == "B" | economic$PROPDMGEXP == "b")
economic <- subset(economic, economic$CROPDMGEXP == "K" | economic$CROPDMGEXP ==
"k" | economic$CROPDMGEXP == "M" | economic$CROPDMGEXP == "m" |
economic$CROPDMGEXP == "B" | economic$CROPDMGEXP == "b")
Converting economic values to number
economic$PROPDMGEXP <- gsub("m", 1e+06, economic$PROPDMGEXP, ignore.case = TRUE)
economic$PROPDMGEXP <- gsub("k", 1000, economic$PROPDMGEXP, ignore.case = TRUE)
economic$PROPDMGEXP <- gsub("b", 1e+09, economic$PROPDMGEXP, ignore.case = TRUE)
economic$PROPDMGEXP <- as.numeric(economic$PROPDMGEXP)
economic$CROPDMGEXP <- gsub("m", 1e+06, economic$CROPDMGEXP, ignore.case = TRUE)
economic$CROPDMGEXP <- gsub("k", 1000, economic$CROPDMGEXP, ignore.case = TRUE)
economic$CROPDMGEXP <- gsub("b", 1e+09, economic$CROPDMGEXP, ignore.case = TRUE)
economic$CROPDMGEXP <- as.numeric(economic$CROPDMGEXP)
economic$PROPDMGEXP <- as.numeric(economic$PROPDMGEXP)
economic$TOTALDMG <- (economic$CROPDMG * economic$CROPDMGEXP) +
(economic$PROPDMG * economic$PROPDMGEXP)
Sum the damages by each event
economic <- aggregate(economic$TOTALDMG, by = list(economic$EVTYPE),
FUN = sum)
Rename economic colunms
colnames(economic) <- c("EVTYPE", "TOTALDMG")
Order the damage cost of the five columns
economic <- economic[order(economic$TOTALDMG, decreasing = TRUE),
]
economic <- economic[1:5, ]
Plot the economic Damage
ggplot() + geom_bar(data = economic, aes(x = EVTYPE, y = TOTALDMG, fill = interaction(TOTALDMG,
EVTYPE)), stat = "identity", show.legend = F) + theme(axis.text.x = element_text(angle = 30,
hjust = 1)) + xlab("Type of Event") + ylab("# of Damage") +ggtitle("Events Causing Damage")
Comment: Base on the plot, flood is the cause of damage. In conclusion, Tornado is harmful with respect to pupulation while flood have the major economic consequences.