This is an exploratory analysis of weather data gathered for the Capacity Management Modeling project.
It assumes that weather data has already been downloaded from the Internet and stored in a SQL Server table
rm(list=ls())
## Working directory and path variables
setwd("\\\\ccor_ds\\common\\dbase\\PredModCapMgmt_P1356\\preparation\\analysis\\R")
datapath <- "\\\\ccor_ds\\common\\dbase\\PredModCapMgmt_P1356\\preparation\\analysis\\R\\Data"
codepath <- "\\\\ccor_ds\\common\\dbase\\PredModCapMgmt_P1356\\preparation\\analysis\\R\\Code"
## Load libraries
require(ggplot2) ## for vizualisations
## Warning: package 'weatherData' was built under R version 3.3.1
require("RODBC") ## for ODBC data commands
## Create a connection channel to the SQL Server database. Uses integrated security.
ch <- odbcConnect("CapacityMgt")
## Create SQL query to select weather table data
sql <- "SELECT [rownames],[Time],[TimeEDT],[TemperatureF],[Dew_PointF],[Humidity],[Sea_Level_PressureIn],[VisibilityMPH],[Wind_Direction],[Wind_SpeedMPH],[Gust_SpeedMPH],[PrecipitationIn],[Events],[Conditions],[WindDirDegrees],[DateUTC],[TimeEST] FROM [dbo].[tblWeather]"
## Execute query
weatherdf <- as.data.frame(sqlQuery(ch, sql))
dim(weatherdf)
## [1] 32696 17
close(ch)
library(lubridate)
## str(weatherdf)
weatherdf$Date <- lubridate::date(weatherdf$Time)
weatherdf$Year <- lubridate::year(weatherdf$Time)
maxtemps <- aggregate(weatherdf$TemperatureF, by = list(weatherdf$Date), max)
colnames(maxtemps) <- c("Date", "MaxTemp")
head(maxtemps)
## Date MaxTemp
## 1 2013-08-01 77.0
## 2 2013-08-02 84.0
## 3 2013-08-03 78.1
## 4 2013-08-04 80.1
## 5 2013-08-05 78.1
## 6 2013-08-06 73.0
ggplot(maxtemps, aes(x = Date, y = MaxTemp)) +
geom_point() +
geom_smooth(method = "lm") +
ggtitle("Temperature Trend 2013 - 2016, New Castle, Delaware") +
ylab("Daily Max Temp Farenheit")