This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

fname<-file.choose()
system.time(df01 <- read.csv(fname, header = T, sep=",", stringsAsFactors = FALSE, encoding = "UTF-8"))
 <ec>궗<ec>슜<ec>옄  <ec>떆<ec>뒪<ed>뀥 elapsed 
   0.10    0.00    0.09 
names(df01)
 [1] "Cruise_ID"     "Year"          "Month"         "Day"           "Hour"          "Min"          
 [7] "Sec"           "Latitude"      "Lat_hem"       "Longitude"     "Longitude_hem" "Course"       
[13] "Speed"         "Heading"       "App_WS"        "App_WD"        "Calc_WS"       "Calc_WD"      
[19] "True_WS"       "True_WD"       "Air_Temp"      "Atmos_Press"   "Humidity"      "Solar_R"      
[25] "Conductivity"  "Seawater_T1"   "Seawater_T2"   "Salinity"      "Depth"        
str(df01)
'data.frame':   4308 obs. of  29 variables:
 $ Cruise_ID    : chr  "HI-17-00" "HI-17-00" "HI-17-00" "HI-17-00" ...
 $ Year         : int  2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 ...
 $ Month        : int  1 1 1 1 1 1 1 1 1 1 ...
 $ Day          : int  3 3 3 3 3 3 3 3 3 3 ...
 $ Hour         : int  0 0 0 0 0 1 1 1 1 1 ...
 $ Min          : int  55 56 57 58 59 0 1 2 3 4 ...
 $ Sec          : int  0 0 0 0 0 0 0 0 0 0 ...
 $ Latitude     : num  35 35 35 35 35 ...
 $ Lat_hem      : chr  "N" "N" "N" "N" ...
 $ Longitude    : num  129 129 129 129 129 ...
 $ Longitude_hem: chr  "E" "E" "E" "E" ...
 $ Course       : num  216 286 301 300 294 ...
 $ Speed        : num  0.4 1.3 2.3 2.2 2.1 1.9 1.8 1.6 1.6 2.3 ...
 $ Heading      : num  305 303 306 310 316 ...
 $ App_WS       : num  1.693 0.557 0.335 1.194 2.479 ...
 $ App_WD       : num  195 157.1 69.8 30.1 325.9 ...
 $ Calc_WS      : int  -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 ...
 $ Calc_WD      : int  -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 ...
 $ True_WS      : num  1.655 1.225 1.144 0.799 1.445 ...
 $ True_WD      : num  132.9 103.8 104.3 45.5 272 ...
 $ Air_Temp     : num  7.43 7.58 7.71 7.69 7.46 ...
 $ Atmos_Press  : num  1023 1023 1023 1023 1023 ...
 $ Humidity     : num  55.5 53.9 54.6 53.2 52.7 ...
 $ Solar_R      : num  335 338 344 346 339 ...
 $ Conductivity : chr  "36.207" "36.207" "36.217" "36.217" ...
 $ Seawater_T1  : chr  "11.321" "11.321" "11.325" "11.325" ...
 $ Seawater_T2  : chr  "10.566" "10.566" "10.563" "10.563" ...
 $ Salinity     : chr  "31.905" "31.905" "31.911" "31.911" ...
 $ Depth        : num  10.5 10.8 10.8 11.1 11.3 ...
head(df01)
Month <-formatC(df01$Month, format = "d", flag = "0", width = 2)
Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale
Day <-formatC(df01$Day, format = "d", flag = "0", width = 2)
Hour <-formatC(df01$Hour, format = "d", flag = "0", width = 2)
Min <-formatC(df01$Min, format = "d", flag = "0", width = 2)
Sec <-formatC(df01$Sec, format = "d", flag = "0", width = 2)
datetime <-paste0(df01$Year, Month,Day, Hour, Min, Sec)
df01$datetime <-ymd_hms(datetime) 
df01$datetime <-as_datetime(df01$datetime)
df01 <- df01[, c(1, 30, 8:29)]  #而щ읆 <ec>닚<ec>꽌 <ec>옱諛곗뿴..

수치형자료 재선언!(수치형에 NA값이 포함되어 있을 경우 문자로 인식됨)

df01$Conductivity<-as.numeric(df01$Conductivity)
NAs introduced by coercion
df01$Seawater_T1<-as.numeric(df01$Seawater_T1)
NAs introduced by coercion
df01$Seawater_T2<-as.numeric(df01$Seawater_T2)
NAs introduced by coercion
df01$Salinity<-as.numeric(df01$Salinity)
NAs introduced by coercion
df01$Depth<-as.numeric(df01$Depth)
str(df01)
'data.frame':   4308 obs. of  24 variables:
 $ Cruise_ID    : chr  "HI-17-00" "HI-17-00" "HI-17-00" "HI-17-00" ...
 $ datetime     : POSIXct, format: "2017-01-03 00:55:00" "2017-01-03 00:56:00" "2017-01-03 00:57:00" "2017-01-03 00:58:00" ...
 $ Latitude     : num  35 35 35 35 35 ...
 $ Lat_hem      : chr  "N" "N" "N" "N" ...
 $ Longitude    : num  129 129 129 129 129 ...
 $ Longitude_hem: chr  "E" "E" "E" "E" ...
 $ Course       : num  216 286 301 300 294 ...
 $ Speed        : num  0.4 1.3 2.3 2.2 2.1 1.9 1.8 1.6 1.6 2.3 ...
 $ Heading      : num  305 303 306 310 316 ...
 $ App_WS       : num  1.693 0.557 0.335 1.194 2.479 ...
 $ App_WD       : num  195 157.1 69.8 30.1 325.9 ...
 $ Calc_WS      : int  -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 ...
 $ Calc_WD      : int  -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 ...
 $ True_WS      : num  1.655 1.225 1.144 0.799 1.445 ...
 $ True_WD      : num  132.9 103.8 104.3 45.5 272 ...
 $ Air_Temp     : num  7.43 7.58 7.71 7.69 7.46 ...
 $ Atmos_Press  : num  1023 1023 1023 1023 1023 ...
 $ Humidity     : num  55.5 53.9 54.6 53.2 52.7 ...
 $ Solar_R      : num  335 338 344 346 339 ...
 $ Conductivity : num  36.2 36.2 36.2 36.2 36.2 ...
 $ Seawater_T1  : num  11.3 11.3 11.3 11.3 11.3 ...
 $ Seawater_T2  : num  10.6 10.6 10.6 10.6 10.6 ...
 $ Salinity     : num  31.9 31.9 31.9 31.9 31.9 ...
 $ Depth        : num  10.5 10.8 10.8 11.1 11.3 ...
Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

NA
Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale

LS0tCnRpdGxlOiAiS1VNT1MgR3JhcGhzIHdpdGggOCBpdGVtcyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gCgpUcnkgZXhlY3V0aW5nIHRoaXMgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpSdW4qIGJ1dHRvbiB3aXRoaW4gdGhlIGNodW5rIG9yIGJ5IHBsYWNpbmcgeW91ciBjdXJzb3IgaW5zaWRlIGl0IGFuZCBwcmVzc2luZyAqQ3RybCtTaGlmdCtFbnRlciouIAoKYGBge3J9CmZuYW1lPC1maWxlLmNob29zZSgpCnN5c3RlbS50aW1lKGRmMDEgPC0gcmVhZC5jc3YoZm5hbWUsIGhlYWRlciA9IFQsIHNlcD0iLCIsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSwgZW5jb2RpbmcgPSAiVVRGLTgiKSkKYGBgCgoKYGBge3J9Cm5hbWVzKGRmMDEpCnN0cihkZjAxKQpoZWFkKGRmMDEpCmBgYAoKYGBge3J9Ck1vbnRoIDwtZm9ybWF0QyhkZjAxJE1vbnRoLCBmb3JtYXQgPSAiZCIsIGZsYWcgPSAiMCIsIHdpZHRoID0gMikKRGF5IDwtZm9ybWF0QyhkZjAxJERheSwgZm9ybWF0ID0gImQiLCBmbGFnID0gIjAiLCB3aWR0aCA9IDIpCkhvdXIgPC1mb3JtYXRDKGRmMDEkSG91ciwgZm9ybWF0ID0gImQiLCBmbGFnID0gIjAiLCB3aWR0aCA9IDIpCk1pbiA8LWZvcm1hdEMoZGYwMSRNaW4sIGZvcm1hdCA9ICJkIiwgZmxhZyA9ICIwIiwgd2lkdGggPSAyKQpTZWMgPC1mb3JtYXRDKGRmMDEkU2VjLCBmb3JtYXQgPSAiZCIsIGZsYWcgPSAiMCIsIHdpZHRoID0gMikKCmRhdGV0aW1lIDwtcGFzdGUwKGRmMDEkWWVhciwgTW9udGgsRGF5LCBIb3VyLCBNaW4sIFNlYykKZGYwMSRkYXRldGltZSA8LXltZF9obXMoZGF0ZXRpbWUpIApkZjAxJGRhdGV0aW1lIDwtYXNfZGF0ZXRpbWUoZGYwMSRkYXRldGltZSkKCmRmMDEgPC0gZGYwMVssIGMoMSwgMzAsIDg6MjkpXSAgI+y7rOufvCDsiJzshJwg7J6s67Cw7Je0Li4KCmBgYAoKCiPsiJjsuZjtmJXsnpDro4wg7J6s7ISg7Ja4ISjsiJjsuZjtmJXsl5AgTkHqsJLsnbQg7Y+s7ZWo65CY7Ja0IOyeiOydhCDqsr3smrAg66y47J6Q66GcIOyduOyLneuQqCkKYGBge3J9CmRmMDEkQ29uZHVjdGl2aXR5PC1hcy5udW1lcmljKGRmMDEkQ29uZHVjdGl2aXR5KQpkZjAxJFNlYXdhdGVyX1QxPC1hcy5udW1lcmljKGRmMDEkU2Vhd2F0ZXJfVDEpCmRmMDEkU2Vhd2F0ZXJfVDI8LWFzLm51bWVyaWMoZGYwMSRTZWF3YXRlcl9UMikKZGYwMSRTYWxpbml0eTwtYXMubnVtZXJpYyhkZjAxJFNhbGluaXR5KQpkZjAxJERlcHRoPC1hcy5udW1lcmljKGRmMDEkRGVwdGgpCnN0cihkZjAxKQpgYGAKCmBgYHtyfQogICBnZ3Bsb3QoZGF0YT1kZjAxLCBhZXMoeD1kYXRldGltZSwgeT1TZWF3YXRlcl9UMSkpICsgZ2VvbV9wb2ludChzaXplPTEuNSwgcGNoPTIxKSsKICAgIHNjYWxlX3hfZGF0ZXRpbWUoYnJlYWtzID0gZGF0ZV9icmVha3MoIjEgZGF5cyIpLCBsYWJlbHMgPSBkYXRlX2Zvcm1hdCgiJWItJWQiKSwgbWlub3JfYnJlYWtzID1kYXRlX2JyZWFrcygiMiBob3VycyIpKSArCiAgICBnZ3RpdGxlKHBhc3RlKCJTZWF3YXRlcl9UMSAo4oSDKSIsICIoIixkZjAxJENydWlzZV9JRCwiKSIpKSArCiAgICB4bGFiKCIyMDE364WEIikKYGBgCgoKYGBge3J9CiBnZ3Bsb3QoZGF0YT1kZjAxLCBhZXMoeD1kYXRldGltZSwgeT1TYWxpbml0eSkpICsgZ2VvbV9wb2ludChzaXplPTEuNSwgcGNoPTIxKSsKICAgIHNjYWxlX3hfZGF0ZXRpbWUoYnJlYWtzID0gZGF0ZV9icmVha3MoIjEgZGF5cyIpLCBsYWJlbHMgPSBkYXRlX2Zvcm1hdCgiJWItJWQiKSwgbWlub3JfYnJlYWtzID1kYXRlX2JyZWFrcygiMiBob3VycyIpKSArCiAgICBnZ3RpdGxlKHBhc3RlKCJTYWxpbml0eSIsICIoIiwgZGYwMSRDcnVpc2VfSUQsIikiKSkgKwogICAgeGxhYigiMjAxN+uFhCIpCmBgYAoKYGBge3J9CiAgIGdncGxvdChkYXRhPWRmMDEsIGFlcyh4PWRhdGV0aW1lLCB5PVRydWVfV1MpKSArIGdlb21fcG9pbnQoc2l6ZT0xLjUsIHBjaD0yMSkrCiAgICAgIHNjYWxlX3hfZGF0ZXRpbWUoYnJlYWtzID0gZGF0ZV9icmVha3MoIjEgZGF5cyIpLCBsYWJlbHMgPSBkYXRlX2Zvcm1hdCgiJWItJWQiKSwgbWlub3JfYnJlYWtzID1kYXRlX2JyZWFrcygiMiBob3VycyIpKSArCiAgICAgIGdndGl0bGUocGFzdGUoIldpbmQgU3BlZWQgKG0vcykiLCAiKCIsIGRmMDEkQ3J1aXNlX0lELCIpIikpICsKICAgICAgeGxhYigiMjAxN+uFhCIpCgpgYGAKCmBgYHtyfQogZ2dwbG90KGRhdGE9ZGYwMSwgYWVzKHg9ZGF0ZXRpbWUsIHk9QWlyX1RlbXApKSArIGdlb21fcG9pbnQoc2l6ZT0xLjUsIHBjaD0yMSkrCiAgICAgIHNjYWxlX3hfZGF0ZXRpbWUoYnJlYWtzID0gZGF0ZV9icmVha3MoIjEgZGF5cyIpLCBsYWJlbHMgPSBkYXRlX2Zvcm1hdCgiJWItJWQiKSwgbWlub3JfYnJlYWtzID1kYXRlX2JyZWFrcygiMiBob3VycyIpKSArCiAgICAgIGdndGl0bGUocGFzdGUoIkFpciBUZW1wZXJhdHVyZSAo4oSDKSIsICIoIiwgZGYwMSRDcnVpc2VfSUQsIikiKSkgKwogICAgICB4bGFiKCIyMDE364WEIikKYGBgCgpgYGB7cn0KICBnZ3Bsb3QoZGF0YT1kZjAxLCBhZXMoeD1kYXRldGltZSwgeT1BdG1vc19QcmVzcykpICsgZ2VvbV9wb2ludChzaXplPTEuNSwgcGNoPTIxKSsKICAgICAgc2NhbGVfeF9kYXRldGltZShicmVha3MgPSBkYXRlX2JyZWFrcygiMSBkYXlzIiksIGxhYmVscyA9IGRhdGVfZm9ybWF0KCIlYi0lZCIpLCBtaW5vcl9icmVha3MgPWRhdGVfYnJlYWtzKCIyIGhvdXJzIikpICsKICAgICAgZ2d0aXRsZShwYXN0ZSgiQXRtb3NwaGVyZSBQcmVzc3VyZSAoaFBhKSIsICIoIiwgZGYwMSRDcnVpc2VfSUQsIikiKSkgKwogICAgICB4bGFiKCIyMDE364WEIikKYGBgCmBgYHtyfQogZ2dwbG90KGRhdGE9ZGYwMSwgYWVzKHg9ZGF0ZXRpbWUsIHk9SHVtaWRpdHkpKSArIGdlb21fcG9pbnQoc2l6ZT0xLjUsIHBjaD0yMSkrCiAgICAgIHNjYWxlX3hfZGF0ZXRpbWUoYnJlYWtzID0gZGF0ZV9icmVha3MoIjEgZGF5cyIpLCBsYWJlbHMgPSBkYXRlX2Zvcm1hdCgiJWItJWQiKSwgbWlub3JfYnJlYWtzID1kYXRlX2JyZWFrcygiMiBob3VycyIpKSArCiAgICAgIGdndGl0bGUocGFzdGUoIlJlbGF0aXZlIGh1bWlkaXR5ICglKSIsICIoIiwgZGYwMSRDcnVpc2VfSUQsIikiKSkgKwogICAgICB4bGFiKCIyMDE364WEIikKYGBgCgpgYGB7cn0KZ2dwbG90KGRhdGE9ZGYwMSwgYWVzKHg9ZGF0ZXRpbWUsIHk9U29sYXJfUikpICsgZ2VvbV9wb2ludChzaXplPTEuNSwgcGNoPTIxKSsKICAgICAgc2NhbGVfeF9kYXRldGltZShicmVha3MgPSBkYXRlX2JyZWFrcygiMSBkYXlzIiksIGxhYmVscyA9IGRhdGVfZm9ybWF0KCIlYi0lZCIpLCBtaW5vcl9icmVha3MgPWRhdGVfYnJlYWtzKCIyIGhvdXJzIikpICsKICAgICAgZ2d0aXRsZShwYXN0ZSgiUmFkaWF0aW9uIChXL+OOoSkiLCAiKCIsIGRmMDEkQ3J1aXNlX0lELCIpIikpICsKICAgICAgeGxhYigiMjAxN+uFhCIpCiAgICAKYGBgCgpgYGB7cn0KIGdncGxvdChkYXRhPWRmMDEsIGFlcyh4PWRhdGV0aW1lLCB5PS1EZXB0aCkpICsgZ2VvbV9wb2ludChzaXplPTEuNSwgcGNoPTIxKSsKICAgICAgc2NhbGVfeF9kYXRldGltZShicmVha3MgPSBkYXRlX2JyZWFrcygiMSBkYXlzIiksIGxhYmVscyA9IGRhdGVfZm9ybWF0KCIlYi0lZCIpLCBtaW5vcl9icmVha3MgPWRhdGVfYnJlYWtzKCIyIGhvdXJzIikpICsKICAgICAgZ2d0aXRsZShwYXN0ZSgiU2VhIERlcHRoIChtKSIsICIoIiwgZGYwMSRDcnVpc2VfSUQsIikiKSkgKwogICAgICB4bGFiKCIyMDE364WEIikKYGBgCgoKCgoKCgoKCgoKCgoKCgoKCg==