Motivation: A Model is Essential for Policy Analysis

Impact of policies

Farm's

REVENUE

Prodcution

COST

Crop

YIELD

Crop

PRICE


Assumption of the Model

  1. Cost is fixed

  2. Yield is normally distributed

  3. Price following a stochastic process.


Data Source and Description


A Representative Farm in SK

Based on SK data
X cost pr yld obs
wheat 156.46 6.59 47.80 768.95
barley 147.37 3.77 64.00 138.61
oats 140.59 2.80 99.10 89.07
flax 148.14 13.36 23.70 58.88
canola 212.59 13.75 39.50 612.49

Soil Zones in SK


The Cost of Production: PMP Approach


Estimate Output Marginal Cost

\[Max: R = \sum_{k=1}^n ( p_k x_k y_k - c_k x_k)\] \[Subjet \; to: \sum_{k=1}^n x_k \le 1668 \;\; (1)\] \[x_k \ge 0\] \[x_k \le x_k^{obs} + 0.01,\; \forall k; \; \; [\lambda_k] \;\; (2)\]


Estimate cost function

Based on SK data
X LAMDA ALPH BETA
wheat 147.83 8.63 0.38
barley 83.20 64.17 1.21
oats 126.18 14.41 2.83
flax 157.78 -9.64 5.35
canola 319.83 -107.23 1.04

Cost, Yield, and Price


Crop Yield History Data in SK (5 Year Mean)

Wheat Oats Barley Flax Canola
meanyield 39.06 79.54 54.94 22.04 32.34

Simulation Crop Yield for SK model


Detrand: time trend and Residual

plot of chunk graph3


1000 Yield Simulation Based on 5 Year Mean and Detrand Standard Deviation

Wheat Oats Barley Flax Canola
Detrendsd 3.68 6.42 6.88 1.96 3.51

plot of chunk graph5


Crop Price History Data of SK

Wheat Oats Barley Flax Canola
meanprice 6.59 2.80 3.77 13.37 13.75

Price Simulation: Geometric Brownian Model


Price Simulation: Geometric Brownian Model(Cont.)

Estimated Mu and Sigma based on historical data in SK
sigma mu
Wheat -0.08809182 0.004406199
Oats -0.07589197 0.004977825
Barley -0.06495353 0.004013233
Flax -0.06686761 0.004150727
Canola -0.04872830 0.003099730

1000 Crop Price Simulation for SK model

plot of chunk graph6


Conclusion

\[Min: \sigma_p^2 = \frac{1}{m} \sum_{j=1}^m ( \pi_j - E[\pi] )^2\] \[Subjet \; to: \sum_{i=1}^n x_k = 1668 \; \] \[\sum_{i=1}^n E[R_i] x_i = K \; (2)\]


Conclusion

\[\sum_{i=1}^n R_{1,i} x_i + Max[Z - \sum_{i=1}^n R_{1,i} x_i, \; 0]- \frac{\delta}{m} \sum_{j=1}^m Max[Z - \sum_{i=1}^n R_{j,i} x_i, \; 0] - \pi_1 = 0 \] \[\sum_{i=1}^n R_{m,i} x_i + Max[Z - \sum_{i=1}^n R_{m,i} x_i, \; 0]- \frac{\delta}{m} \sum_{j=1}^m Max[Z - \sum_{i=1}^n R_{j,i} x_i, \; 0] - \pi_m = 0 \]