library(R2WinBUGS)
library(lattice)
hospital <- data.frame(n=c(47,148,119,810,211,196,148,215,207,97,256),r=c(0,18,8,46,8,13,9,31,14,8,29))
# preparing everything
k <- nrow(hospital)
n <- hospital$n
r <- hospital$r
data1 <- list("k", "n", "r") #List of names
inits <- function()
{
list(p = rep(0.1,11))
}
# running the MCMC model
sim<-bugs(data1,inits,model.file = "inst ranking 1.txt",parameters=c("p")
,n.chains = 1,n.iter= 1000, bugs.directory = "C:/Users/natan/Google Drive/Act/Computational Actuarial Science/ HW/15/WinBUGS14")
post<-as.mcmc.list(sim)
summary(post)
##
## Iterations = 501:1000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 500
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## deviance 56.70422 5.045022 0.2256202 0.2256202
## p[1] 0.01984 0.018859 0.0008434 0.0008434
## p[10] 0.09283 0.029864 0.0013356 0.0013356
## p[11] 0.11752 0.020219 0.0009042 0.0008549
## p[2] 0.12806 0.027596 0.0012341 0.0012341
## p[3] 0.07184 0.023707 0.0010602 0.0010602
## p[4] 0.05797 0.008458 0.0003782 0.0003782
## p[5] 0.04201 0.013110 0.0005863 0.0005863
## p[6] 0.07091 0.017889 0.0008000 0.0007334
## p[7] 0.06699 0.019649 0.0008787 0.0008787
## p[8] 0.14575 0.024640 0.0011019 0.0011019
## p[9] 0.07243 0.017616 0.0007878 0.0007878
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## deviance 4.901e+01 52.88500 56.04500 59.70000 68.31975
## p[1] 7.821e-04 0.00620 0.01303 0.02839 0.06576
## p[10] 4.443e-02 0.07209 0.08901 0.11060 0.16072
## p[11] 8.304e-02 0.10410 0.11600 0.12843 0.16256
## p[2] 8.138e-02 0.10837 0.12535 0.14402 0.18632
## p[3] 3.456e-02 0.05529 0.06910 0.08516 0.12910
## p[4] 4.279e-02 0.05204 0.05697 0.06383 0.07466
## p[5] 1.995e-02 0.03238 0.04101 0.05020 0.06914
## p[6] 3.889e-02 0.05795 0.06989 0.08226 0.10906
## p[7] 3.328e-02 0.05361 0.06531 0.07922 0.11149
## p[8] 1.012e-01 0.12950 0.14380 0.16173 0.19943
## p[9] 4.347e-02 0.06007 0.07120 0.08197 0.11054
plot(post)




xyplot(post)

densityplot(post)

acfplot(post)

cumuplot(post)

