alldata <- read.csv("C:/ShannonCall/Thesis/Data/CSV_Data/CSVData/simpveg.csv")
summary(alldata)
##  site.location site.          Site       Transect     Age      Location 
##  a.1    : 6    a:12   Beaver    :12   T1B1A  : 1   Inter:12   Above:24  
##  a.2    : 6    b:12   Fishpark  :12   T1B2A  : 1   New  :12   Below:24  
##  b.1    : 6    c:12   Harper    :12   T1B3A  : 1   Old  :12             
##  b.2    : 6    d:12   Stillwater:12   T1B4B  : 1   Pre  :12             
##  c.1    : 6                           T1B5B  : 1                        
##  c.2    : 6                           T1B6B  : 1                        
##  (Other):12                           (Other):42                        
##     shannon         div       BareGround        FatHen      
##  Min.   :0.5654   high:16   Min.   : 0.00   Min.   : 0.000  
##  1st Qu.:1.2882   low :16   1st Qu.: 0.75   1st Qu.: 0.000  
##  Median :1.5030   med :16   Median : 3.00   Median : 2.000  
##  Mean   :1.5116             Mean   : 4.50   Mean   : 4.729  
##  3rd Qu.:1.8230             3rd Qu.: 6.25   3rd Qu.: 4.000  
##  Max.   :2.1240             Max.   :24.00   Max.   :33.000  
##                                                             
##  ColonialBentGrass  HookerWillow     SitkaWillow         TreFoil    
##  Min.   : 0.000    Min.   :0.0000   Min.   :0.00000   Min.   :0.00  
##  1st Qu.: 0.000    1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00  
##  Median : 1.000    Median :0.0000   Median :0.00000   Median :0.00  
##  Mean   : 5.896    Mean   :0.5417   Mean   :0.08333   Mean   :0.75  
##  3rd Qu.: 5.750    3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00  
##  Max.   :29.000    Max.   :5.0000   Max.   :2.00000   Max.   :8.00  
##                                                                     
##  WesternHemlock      CommonRush       QuackGrass         HBB       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.00000   Median :0.0000   Median :0.000   Median :0.000  
##  Mean   :0.02083   Mean   :0.1667   Mean   :0.625   Mean   :0.625  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:1.000   3rd Qu.:0.000  
##  Max.   :1.00000   Max.   :3.0000   Max.   :4.000   Max.   :6.000  
##                                                                    
##  RoundLeafPlantain   RedClover       Scotchbroom         Alder       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.04167   Mean   :0.1875   Mean   :0.2292   Mean   :0.2917  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :4.0000   Max.   :3.0000   Max.   :7.0000  
##                                                                      
##  CreepingButtercup  VelvetGrass     EquisetumHymale        LWD         
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   : 0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.: 0.0000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median : 0.0000  
##  Mean   :0.02083   Mean   :0.1042   Mean   :0.02083   Mean   : 0.5833  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000  
##  Max.   :1.00000   Max.   :2.0000   Max.   :1.00000   Max.   :10.0000  
##                                                                        
##     Gumweed         NootkaRose     PacSilverweed     Snowberry      
##  Min.   : 0.000   Min.   :0.0000   Min.   :0.000   Min.   :0.00000  
##  1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.00000  
##  Median : 1.500   Median :0.0000   Median :0.000   Median :0.00000  
##  Mean   : 3.979   Mean   :0.3125   Mean   :0.125   Mean   :0.04167  
##  3rd Qu.: 6.250   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.00000  
##  Max.   :30.000   Max.   :8.0000   Max.   :2.000   Max.   :1.00000  
##                                                                     
##    OxEyeDaisy        CurlyDock          BLMaple            Soreil       
##  Min.   :0.00000   Min.   :0.00000   Min.   : 0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.: 0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median : 0.0000   Median :0.00000  
##  Mean   :0.04167   Mean   :0.02083   Mean   : 0.2917   Mean   :0.02083  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.: 0.0000   3rd Qu.:0.00000  
##  Max.   :2.00000   Max.   :1.00000   Max.   :10.0000   Max.   :1.00000  
##                                                                         
##  CanadaThistle      ReedCanary     CommonSpikeRush  EnglishPlantain
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.0625   Mean   :0.2292   Mean   :0.0625   Mean   :0.125  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000  
##  Max.   :1.0000   Max.   :6.0000   Max.   :2.0000   Max.   :3.000  
##                                                                    
##    SwordFern        HairyCatEar         Tansy      SelfHeal
##  Min.   :0.00000   Min.   :0.0000   Min.   :0   Min.   :0  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0   1st Qu.:0  
##  Median :0.00000   Median :0.0000   Median :0   Median :0  
##  Mean   :0.02083   Mean   :0.0625   Mean   :0   Mean   :0  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0   3rd Qu.:0  
##  Max.   :1.00000   Max.   :2.0000   Max.   :0   Max.   :0  
##                                                            
##    TrailingBB        PickleWeed      MeadowBarley      SaltGrass     
##  Min.   : 0.0000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 0.0000   1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.000  
##  Median : 0.0000   Median : 1.000   Median : 0.000   Median : 0.000  
##  Mean   : 0.2083   Mean   : 9.604   Mean   : 2.458   Mean   : 3.188  
##  3rd Qu.: 0.0000   3rd Qu.:15.000   3rd Qu.: 0.000   3rd Qu.: 7.000  
##  Max.   :10.0000   Max.   :40.000   Max.   :36.000   Max.   :15.000  
##                                                                      
##  CanadianSandSpurry   DuneGrass      AmericanSeaRocket    Ribwort       
##  Min.   : 0.000     Min.   : 0.000   Min.   :0.0000    Min.   :0.00000  
##  1st Qu.: 0.000     1st Qu.: 0.000   1st Qu.:0.0000    1st Qu.:0.00000  
##  Median : 0.000     Median : 0.000   Median :0.0000    Median :0.00000  
##  Mean   : 1.188     Mean   : 2.083   Mean   :0.3542    Mean   :0.02083  
##  3rd Qu.: 0.000     3rd Qu.: 0.000   3rd Qu.:0.0000    3rd Qu.:0.00000  
##  Max.   :27.000     Max.   :27.000   Max.   :7.0000    Max.   :1.00000  
##                                                                         
##     Sandwort       SeaPlantain     CoastalPearlWort      Montia      
##  Min.   :0.0000   Min.   :0.0000   Min.   : 0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.: 0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median : 0.0000   Median :0.0000  
##  Mean   :0.1458   Mean   :0.9167   Mean   : 0.7708   Mean   :0.1667  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.: 0.0000   3rd Qu.:0.0000  
##  Max.   :7.0000   Max.   :8.0000   Max.   :19.0000   Max.   :4.0000  
##                                                                      
##   DouglasAster        SeaArrow       LyngbySedge      BlueJointGrass 
##  Min.   :0.00000   Min.   : 0.000   Min.   : 0.0000   Min.   :0.000  
##  1st Qu.:0.00000   1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.000  
##  Median :0.00000   Median : 0.000   Median : 0.0000   Median :0.000  
##  Mean   :0.08333   Mean   : 0.375   Mean   : 0.3958   Mean   :0.125  
##  3rd Qu.:0.00000   3rd Qu.: 0.000   3rd Qu.: 0.0000   3rd Qu.:0.000  
##  Max.   :2.00000   Max.   :17.000   Max.   :11.0000   Max.   :4.000  
##                                                                      
##  SpikeBentGrass    JuncusGerardii    BlueWildRye        SweetPea    
##  Min.   :0.00000   Min.   : 0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.00000   1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.00000   Median : 0.000   Median :0.0000   Median :0.000  
##  Mean   :0.02083   Mean   : 0.625   Mean   :0.1458   Mean   :0.375  
##  3rd Qu.:0.00000   3rd Qu.: 0.000   3rd Qu.:0.0000   3rd Qu.:0.000  
##  Max.   :1.00000   Max.   :19.000   Max.   :5.0000   Max.   :5.000  
##                                                                     
##  JaumeaCarnosa      ShorePine      FowlersKnotweed     QueenLace
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0  
##  Mean   :0.8125   Mean   :0.3125   Mean   :0.02083   Mean   :0  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0  
##  Max.   :8.0000   Max.   :7.0000   Max.   :1.00000   Max.   :0  
##                                                                 
##   BlackMedick    BindWeed   Stickyweed TuftedHairGrass       Dodder 
##  Min.   :0    Min.   :0   Min.   :0    Min.   :0.00000   Min.   :0  
##  1st Qu.:0    1st Qu.:0   1st Qu.:0    1st Qu.:0.00000   1st Qu.:0  
##  Median :0    Median :0   Median :0    Median :0.00000   Median :0  
##  Mean   :0    Mean   :0   Mean   :0    Mean   :0.04167   Mean   :0  
##  3rd Qu.:0    3rd Qu.:0   3rd Qu.:0    3rd Qu.:0.00000   3rd Qu.:0  
##  Max.   :0    Max.   :0   Max.   :0    Max.   :2.00000   Max.   :0  
##                                                                     
##   BlackLocust         OsoBerry         DouglasFir     NoddingSemaphore
##  Min.   : 0.0000   Min.   : 0.0000   Min.   :0.0000   Min.   :0       
##  1st Qu.: 0.0000   1st Qu.: 0.0000   1st Qu.:0.0000   1st Qu.:0       
##  Median : 0.0000   Median : 0.0000   Median :0.0000   Median :0       
##  Mean   : 0.2083   Mean   : 0.3333   Mean   :0.1042   Mean   :0       
##  3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.:0.0000   3rd Qu.:0       
##  Max.   :10.0000   Max.   :14.0000   Max.   :5.0000   Max.   :0       
##                                                                       
##      Yarrow 
##  Min.   :0  
##  1st Qu.:0  
##  Median :0  
##  Mean   :0  
##  3rd Qu.:0  
##  Max.   :0  
## 
attach(alldata)

Hierarchical Clustering

op=par(mfrow=c(1,1))
alldataPCA = prcomp(alldata[,c(9:40,43:65,70:70,72:74)], scale=T, center=T)
summary(alldataPCA)
## Importance of components:
##                           PC1     PC2     PC3     PC4     PC5     PC6
## Standard deviation     2.4277 2.25428 2.03388 1.98576 1.87275 1.76461
## Proportion of Variance 0.0999 0.08613 0.07011 0.06683 0.05944 0.05278
## Cumulative Proportion  0.0999 0.18603 0.25614 0.32298 0.38242 0.43520
##                            PC7     PC8     PC9    PC10    PC11    PC12
## Standard deviation     1.74036 1.67132 1.58145 1.56885 1.45198 1.43265
## Proportion of Variance 0.05134 0.04734 0.04239 0.04172 0.03573 0.03479
## Cumulative Proportion  0.48653 0.53388 0.57627 0.61798 0.65372 0.68850
##                           PC13    PC14    PC15    PC16    PC17    PC18
## Standard deviation     1.33848 1.32339 1.27801 1.24861 1.17939 1.11719
## Proportion of Variance 0.03036 0.02968 0.02768 0.02642 0.02358 0.02115
## Cumulative Proportion  0.71887 0.74855 0.77624 0.80266 0.82624 0.84739
##                           PC19    PC20    PC21    PC22    PC23    PC24
## Standard deviation     1.05634 1.02548 0.99574 0.91553 0.82834 0.77418
## Proportion of Variance 0.01891 0.01782 0.01681 0.01421 0.01163 0.01016
## Cumulative Proportion  0.86630 0.88413 0.90093 0.91514 0.92677 0.93693
##                           PC25    PC26    PC27    PC28    PC29    PC30
## Standard deviation     0.75035 0.72528 0.69389 0.60750 0.58858 0.56161
## Proportion of Variance 0.00954 0.00892 0.00816 0.00626 0.00587 0.00535
## Cumulative Proportion  0.94647 0.95539 0.96355 0.96980 0.97567 0.98102
##                           PC31    PC32    PC33    PC34    PC35    PC36
## Standard deviation     0.54105 0.46956 0.41237 0.35939 0.32950 0.30509
## Proportion of Variance 0.00496 0.00374 0.00288 0.00219 0.00184 0.00158
## Cumulative Proportion  0.98598 0.98972 0.99260 0.99479 0.99663 0.99821
##                           PC37    PC38    PC39    PC40    PC41    PC42
## Standard deviation     0.22588 0.14092 0.11774 0.08377 0.07008 0.06942
## Proportion of Variance 0.00086 0.00034 0.00023 0.00012 0.00008 0.00008
## Cumulative Proportion  0.99907 0.99941 0.99964 0.99976 0.99985 0.99993
##                           PC43    PC44    PC45    PC46    PC47      PC48
## Standard deviation     0.05058 0.03394 0.02042 0.01138 0.00326 1.979e-16
## Proportion of Variance 0.00004 0.00002 0.00001 0.00000 0.00000 0.000e+00
## Cumulative Proportion  0.99997 0.99999 1.00000 1.00000 1.00000 1.000e+00
attach(alldataPCA)
PCA.scores = data.frame(alldata$Site, alldata$div, round(alldataPCA$x, 3))
#write.table(PCA.scores, "alldataPCA.csv", quote=F, row.names=F, col.names=T, sep=",")
newdata = read.table("alldataPCA.csv", T, sep=",")
attach(newdata)
distances = dist(newdata[, c(3:23)], method="euclidean") #PCA Scores 1-21##
eward=hclust(distances, method="ward.D2")

Plot based on “low”, “med”, and “high” diversity

plot(eward, labels=div, hang=0, cex=0.65, xlab="", sub="", main="PC1-21", ylab="Euclidean Distance")

Plot based on site: “Harper”, “Stillwater”, “Beaver”, and “Fishpark”

plot(eward, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-21", ylab="Euclidean Distance")

How do I visualize what these different labels are telling me?
HCgroups.div = cutree(eward, 4)
table(HCgroups.div, div)
##             div
## HCgroups.div high low med
##            1   14  14   9
##            2    0   0   1
##            3    1   2   6
##            4    1   0   0
chisq.test(HCgroups.div, div)
## Warning in chisq.test(HCgroups.div, div): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups.div and div
## X-squared = 10.018, df = 6, p-value = 0.1239
Using “low”, “med”, and “high” diversity does not seem to be a good method for clustering.
HCgroups.site = cutree(eward, 3)
table(HCgroups.site, Site)
##              Site
## HCgroups.site Beaver Fishpark Harper Stillwater
##             1      2       12     11         12
##             2      1        0      1          0
##             3      9        0      0          0
chisq.test(HCgroups.site, Site)
## Warning in chisq.test(HCgroups.site, Site): Chi-squared approximation may
## be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups.site and Site
## X-squared = 36.649, df = 6, p-value = 2.062e-06
HCgroups = cutree(eward, 4)
table(HCgroups, Site)
##         Site
## HCgroups Beaver Fishpark Harper Stillwater
##        1      2       12     11         12
##        2      0        0      1          0
##        3      9        0      0          0
##        4      1        0      0          0
chisq.test(HCgroups, Site)
## Warning in chisq.test(HCgroups, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups and Site
## X-squared = 40.649, df = 9, p-value = 5.795e-06
Using site produces a significant chi-square p-value. Using 3 groups still produces a significant chi-square p-value. What is the value is using 3 vs 4?

Plotting PC 1-16, reducing one PC per plot.

distances = dist(newdata[, c(3:18)], method="euclidean")
eward=hclust(distances, method="ward.D2")
plot(eward, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-16 (80%)", ylab="Euclidean Distance")

HCgroups = cutree(eward, 3)
table(HCgroups, Site)
##         Site
## HCgroups Beaver Fishpark Harper Stillwater
##        1      5       12     11         12
##        2      1        0      1          0
##        3      6        0      0          0
chisq.test(HCgroups, Site)
## Warning in chisq.test(HCgroups, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups and Site
## X-squared = 23.4, df = 6, p-value = 0.000673
distances1 = dist(newdata[, c(3:15)], method="euclidean")
eward1=hclust(distances1, method="ward.D2")
plot(eward1, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-13 (72%)", ylab="Euclidean Distance")

HCgroups1 = cutree(eward1, 3)
table(HCgroups1, Site)
##          Site
## HCgroups1 Beaver Fishpark Harper Stillwater
##         1      5       12     11         12
##         2      1        0      1          0
##         3      6        0      0          0
chisq.test(HCgroups1, Site)
## Warning in chisq.test(HCgroups1, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups1 and Site
## X-squared = 23.4, df = 6, p-value = 0.000673
distances2 = dist(newdata[, c(3:12)], method="euclidean")
eward2=hclust(distances2, method="ward.D2")
plot(eward2, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-10 (62%)", ylab="Euclidean Distance")

HCgroups2 = cutree(eward2, 3)
table(HCgroups2, Site) 
##          Site
## HCgroups2 Beaver Fishpark Harper Stillwater
##         1      5       12     11         12
##         2      1        0      1          0
##         3      6        0      0          0
chisq.test(HCgroups2, Site)
## Warning in chisq.test(HCgroups2, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups2 and Site
## X-squared = 23.4, df = 6, p-value = 0.000673
distances3 = dist(newdata[, c(3:10)], method="euclidean")
eward3=hclust(distances3, method="ward.D2")
plot(eward3, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-8 (53%)", ylab="Euclidean Distance")

HCgroups3 = cutree(eward3, 3)
table(HCgroups3, Site)
##          Site
## HCgroups3 Beaver Fishpark Harper Stillwater
##         1      2       12     11         12
##         2      1        0      1          0
##         3      9        0      0          0
chisq.test(HCgroups3, Site)
## Warning in chisq.test(HCgroups3, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups3 and Site
## X-squared = 36.649, df = 6, p-value = 2.062e-06
distances4 = dist(newdata[, c(3:9)], method="euclidean")
eward4=hclust(distances4, method="ward.D2")
plot(eward4, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-7 (49%)", ylab="Euclidean Distance")

HCgroups4 = cutree(eward4, 3)
table(HCgroups4, Site)
##          Site
## HCgroups4 Beaver Fishpark Harper Stillwater
##         1      2       12     11         12
##         2      1        0      1          0
##         3      9        0      0          0
chisq.test(HCgroups4, Site)
## Warning in chisq.test(HCgroups4, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups4 and Site
## X-squared = 36.649, df = 6, p-value = 2.062e-06
distances5 = dist(newdata[, c(3:7)], method="euclidean")
eward5=hclust(distances5, method="ward.D2")
plot(eward5, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-5 (38%)", ylab="Euclidean Distance")

HCgroups5 = cutree(eward5, 3)
table(HCgroups5, Site)
##          Site
## HCgroups5 Beaver Fishpark Harper Stillwater
##         1      2       12     11         12
##         2      1        0      1          0
##         3      9        0      0          0
chisq.test(HCgroups5, Site)
## Warning in chisq.test(HCgroups5, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups5 and Site
## X-squared = 36.649, df = 6, p-value = 2.062e-06
# I think clustering on principal components 1 - 5 yields the most meaningful results, since Beaver clusters mostly by itself. There is one misclassification from Harper in that cluster - and I know which sample it is, since Harper had a very distinct outlier. 


distances6 = dist(newdata[, c(3:5)], method="euclidean")
eward6=hclust(distances6, method="ward.D2")
plot(eward6, labels=Site, hang=0, cex=0.65, xlab="", sub="", main="PC1-3 (26%)", ylab="Euclidean Distance")

HCgroups6 = cutree(eward6, 3)
table(HCgroups6, Site)
##          Site
## HCgroups6 Beaver Fishpark Harper Stillwater
##         1      5       12     11         12
##         2      1        0      1          0
##         3      6        0      0          0
chisq.test(HCgroups6, Site)
## Warning in chisq.test(HCgroups6, Site): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  HCgroups6 and Site
## X-squared = 23.4, df = 6, p-value = 0.000673

Plotting PC I and II

op = par(mfrow=c(1,1))
species.prcomp <- prcomp(alldata[,c(9:40,43:65,70:70,72:74)], scale=T, center=T)
species.prcomp$rotation
species.prcomp$x

plot(species.prcomp$x,
     main="Principal Components Ordination of Vegetation by Site",
     pch=c(21,22,23,24)[unclass(alldata$Site)],
     bg=c("pink", "violet", "purple", "yellow")[unclass(alldata$Site)],
     cex=1.5)
abline(h=0); abline(v=0)
legend(x="topright", c("Harper", "Stillwater", "Beaver", "Fishpark"),
       pch=c(21, 22, 23, 24), pt.bg=c("pink", "violet", "purple", "yellow"),
       bty="n", cex=1)

plot(species.prcomp$x[,c(2:3)],
     main="Principal Components Ordination of Vegetation by Site",
     pch=c(21,22,23,24)[unclass(alldata$Site)],
     bg=c("pink", "violet", "purple", "yellow")[unclass(alldata$Site)],cex=1.5)
abline(h=0); abline(v=0)
legend(x="topright", c("Harper", "Stillwater", "Beaver", "Fishpark"),
       pch=c(21, 22, 23, 24), pt.bg=c("pink", "violet", "purple", "yellow"),
       bty="n", cex=1)