rm(list=ls())
require(ggplot2)
require(gridExtra)
require(nortest)
require(moments)
require(xts)
##
## Anderson-Darling normality test
##
## data: dat$TP
## A = 372.25, p-value < 2.2e-16
##
## Cramer-von Mises normality test
##
## data: dat$TP
## W = 62.11, p-value = 7.37e-10
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: dat$TP
## D = 0.053219, p-value < 2.2e-16
##
## Pearson chi-square normality test
##
## data: dat$TP
## P = 12536, p-value < 2.2e-16
##
## Anscombe-Glynn kurtosis test
##
## data: dat$TP
## kurt = 2.3115, z = -67.4150, p-value < 2.2e-16
## alternative hypothesis: kurtosis is not equal to 3
##
## Bonett-Seier test for Geary kurtosis
##
## data: dat$TP
## tau = 6.3787, z = -57.3730, p-value < 2.2e-16
## alternative hypothesis: kurtosis is not equal to sqrt(2/pi)
##
## Anderson-Darling normality test
##
## data: dat$RH
## A = 1111.1, p-value < 2.2e-16
##
## Cramer-von Mises normality test
##
## data: dat$RH
## W = 175.42, p-value = 7.37e-10
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: dat$RH
## D = 0.074015, p-value < 2.2e-16
##
## Pearson chi-square normality test
##
## data: dat$RH
## P = 31582, p-value < 2.2e-16
##
## Anscombe-Glynn kurtosis test
##
## data: dat$RH
## kurt = 2.3266, z = -64.9940, p-value < 2.2e-16
## alternative hypothesis: kurtosis is not equal to 3
##
## Bonett-Seier test for Geary kurtosis
##
## data: dat$RH
## tau = 14.908, z = -54.664, p-value < 2.2e-16
## alternative hypothesis: kurtosis is not equal to sqrt(2/pi)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
##
## Anderson-Darling normality test
##
## data: d$Beba
## A = 66.289, p-value < 2.2e-16
##
## Cramer-von Mises normality test
##
## data: d$Beba
## W = 13.562, p-value = 7.37e-10
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: d$Beba
## D = 0.36165, p-value < 2.2e-16
##
## Pearson chi-square normality test
##
## data: d$Beba
## P = 2257.5, p-value < 2.2e-16
##
## Anscombe-Glynn kurtosis test
##
## data: d$Beba
## kurt = 63.474, z = 11.961, p-value < 2.2e-16
## alternative hypothesis: kurtosis is not equal to 3
##
## Bonett-Seier test for Geary kurtosis
##
## data: d$Beba
## tau = 34.238, z = 33.966, p-value < 2.2e-16
## alternative hypothesis: kurtosis is not equal to sqrt(2/pi)