# R Bridge Week 2 Assignment
# SPS Cuny - Bridge Program
# Spring 2017

# Duubar E. Villalobos Jimenez
# mydvtech@gmail.com

#One of the challenges in working with data is wrangling.  In this assignment we will use R to perform this task.

#Here is a list of data sets:  
#http://vincentarelbundock.github.io/Rdatasets/ (click on the csv index for a list)

#Method 1  --- Download File
getwd()
## [1] "C:/Users/mydvtech/Documents/GitHub/CUNY-Bridge/R"
setwd("C:/Users/mydvtech/Documents/GitHub/CUNY-Bridge/R")
airquality <- read.csv("airquality.csv", header = TRUE)
airquality
##       X Ozone Solar.R Wind Temp Month Day
## 1     1    41     190  7.4   67     5   1
## 2     2    36     118  8.0   72     5   2
## 3     3    12     149 12.6   74     5   3
## 4     4    18     313 11.5   62     5   4
## 5     5    NA      NA 14.3   56     5   5
## 6     6    28      NA 14.9   66     5   6
## 7     7    23     299  8.6   65     5   7
## 8     8    19      99 13.8   59     5   8
## 9     9     8      19 20.1   61     5   9
## 10   10    NA     194  8.6   69     5  10
## 11   11     7      NA  6.9   74     5  11
## 12   12    16     256  9.7   69     5  12
## 13   13    11     290  9.2   66     5  13
## 14   14    14     274 10.9   68     5  14
## 15   15    18      65 13.2   58     5  15
## 16   16    14     334 11.5   64     5  16
## 17   17    34     307 12.0   66     5  17
## 18   18     6      78 18.4   57     5  18
## 19   19    30     322 11.5   68     5  19
## 20   20    11      44  9.7   62     5  20
## 21   21     1       8  9.7   59     5  21
## 22   22    11     320 16.6   73     5  22
## 23   23     4      25  9.7   61     5  23
## 24   24    32      92 12.0   61     5  24
## 25   25    NA      66 16.6   57     5  25
## 26   26    NA     266 14.9   58     5  26
## 27   27    NA      NA  8.0   57     5  27
## 28   28    23      13 12.0   67     5  28
## 29   29    45     252 14.9   81     5  29
## 30   30   115     223  5.7   79     5  30
## 31   31    37     279  7.4   76     5  31
## 32   32    NA     286  8.6   78     6   1
## 33   33    NA     287  9.7   74     6   2
## 34   34    NA     242 16.1   67     6   3
## 35   35    NA     186  9.2   84     6   4
## 36   36    NA     220  8.6   85     6   5
## 37   37    NA     264 14.3   79     6   6
## 38   38    29     127  9.7   82     6   7
## 39   39    NA     273  6.9   87     6   8
## 40   40    71     291 13.8   90     6   9
## 41   41    39     323 11.5   87     6  10
## 42   42    NA     259 10.9   93     6  11
## 43   43    NA     250  9.2   92     6  12
## 44   44    23     148  8.0   82     6  13
## 45   45    NA     332 13.8   80     6  14
## 46   46    NA     322 11.5   79     6  15
## 47   47    21     191 14.9   77     6  16
## 48   48    37     284 20.7   72     6  17
## 49   49    20      37  9.2   65     6  18
## 50   50    12     120 11.5   73     6  19
## 51   51    13     137 10.3   76     6  20
## 52   52    NA     150  6.3   77     6  21
## 53   53    NA      59  1.7   76     6  22
## 54   54    NA      91  4.6   76     6  23
## 55   55    NA     250  6.3   76     6  24
## 56   56    NA     135  8.0   75     6  25
## 57   57    NA     127  8.0   78     6  26
## 58   58    NA      47 10.3   73     6  27
## 59   59    NA      98 11.5   80     6  28
## 60   60    NA      31 14.9   77     6  29
## 61   61    NA     138  8.0   83     6  30
## 62   62   135     269  4.1   84     7   1
## 63   63    49     248  9.2   85     7   2
## 64   64    32     236  9.2   81     7   3
## 65   65    NA     101 10.9   84     7   4
## 66   66    64     175  4.6   83     7   5
## 67   67    40     314 10.9   83     7   6
## 68   68    77     276  5.1   88     7   7
## 69   69    97     267  6.3   92     7   8
## 70   70    97     272  5.7   92     7   9
## 71   71    85     175  7.4   89     7  10
## 72   72    NA     139  8.6   82     7  11
## 73   73    10     264 14.3   73     7  12
## 74   74    27     175 14.9   81     7  13
## 75   75    NA     291 14.9   91     7  14
## 76   76     7      48 14.3   80     7  15
## 77   77    48     260  6.9   81     7  16
## 78   78    35     274 10.3   82     7  17
## 79   79    61     285  6.3   84     7  18
## 80   80    79     187  5.1   87     7  19
## 81   81    63     220 11.5   85     7  20
## 82   82    16       7  6.9   74     7  21
## 83   83    NA     258  9.7   81     7  22
## 84   84    NA     295 11.5   82     7  23
## 85   85    80     294  8.6   86     7  24
## 86   86   108     223  8.0   85     7  25
## 87   87    20      81  8.6   82     7  26
## 88   88    52      82 12.0   86     7  27
## 89   89    82     213  7.4   88     7  28
## 90   90    50     275  7.4   86     7  29
## 91   91    64     253  7.4   83     7  30
## 92   92    59     254  9.2   81     7  31
## 93   93    39      83  6.9   81     8   1
## 94   94     9      24 13.8   81     8   2
## 95   95    16      77  7.4   82     8   3
## 96   96    78      NA  6.9   86     8   4
## 97   97    35      NA  7.4   85     8   5
## 98   98    66      NA  4.6   87     8   6
## 99   99   122     255  4.0   89     8   7
## 100 100    89     229 10.3   90     8   8
## 101 101   110     207  8.0   90     8   9
## 102 102    NA     222  8.6   92     8  10
## 103 103    NA     137 11.5   86     8  11
## 104 104    44     192 11.5   86     8  12
## 105 105    28     273 11.5   82     8  13
## 106 106    65     157  9.7   80     8  14
## 107 107    NA      64 11.5   79     8  15
## 108 108    22      71 10.3   77     8  16
## 109 109    59      51  6.3   79     8  17
## 110 110    23     115  7.4   76     8  18
## 111 111    31     244 10.9   78     8  19
## 112 112    44     190 10.3   78     8  20
## 113 113    21     259 15.5   77     8  21
## 114 114     9      36 14.3   72     8  22
## 115 115    NA     255 12.6   75     8  23
## 116 116    45     212  9.7   79     8  24
## 117 117   168     238  3.4   81     8  25
## 118 118    73     215  8.0   86     8  26
## 119 119    NA     153  5.7   88     8  27
## 120 120    76     203  9.7   97     8  28
## 121 121   118     225  2.3   94     8  29
## 122 122    84     237  6.3   96     8  30
## 123 123    85     188  6.3   94     8  31
## 124 124    96     167  6.9   91     9   1
## 125 125    78     197  5.1   92     9   2
## 126 126    73     183  2.8   93     9   3
## 127 127    91     189  4.6   93     9   4
## 128 128    47      95  7.4   87     9   5
## 129 129    32      92 15.5   84     9   6
## 130 130    20     252 10.9   80     9   7
## 131 131    23     220 10.3   78     9   8
## 132 132    21     230 10.9   75     9   9
## 133 133    24     259  9.7   73     9  10
## 134 134    44     236 14.9   81     9  11
## 135 135    21     259 15.5   76     9  12
## 136 136    28     238  6.3   77     9  13
## 137 137     9      24 10.9   71     9  14
## 138 138    13     112 11.5   71     9  15
## 139 139    46     237  6.9   78     9  16
## 140 140    18     224 13.8   67     9  17
## 141 141    13      27 10.3   76     9  18
## 142 142    24     238 10.3   68     9  19
## 143 143    16     201  8.0   82     9  20
## 144 144    13     238 12.6   64     9  21
## 145 145    23      14  9.2   71     9  22
## 146 146    36     139 10.3   81     9  23
## 147 147     7      49 10.3   69     9  24
## 148 148    14      20 16.6   63     9  25
## 149 149    30     193  6.9   70     9  26
## 150 150    NA     145 13.2   77     9  27
## 151 151    14     191 14.3   75     9  28
## 152 152    18     131  8.0   76     9  29
## 153 153    20     223 11.5   68     9  30
# Method 2  --- Internet File
#Original Location of the file
#airquality <- read.csv(url("http://vincentarelbundock.github.io/Rdatasets/csv/datasets/airquality.csv"), header = TRUE)

#GitHub Raw Location of the file
airquality <- read.csv(url("https://raw.githubusercontent.com/dvillalobos/CUNY-Bridge/master/airquality.csv"), header = TRUE)
airquality
##       X Ozone Solar.R Wind Temp Month Day
## 1     1    41     190  7.4   67     5   1
## 2     2    36     118  8.0   72     5   2
## 3     3    12     149 12.6   74     5   3
## 4     4    18     313 11.5   62     5   4
## 5     5    NA      NA 14.3   56     5   5
## 6     6    28      NA 14.9   66     5   6
## 7     7    23     299  8.6   65     5   7
## 8     8    19      99 13.8   59     5   8
## 9     9     8      19 20.1   61     5   9
## 10   10    NA     194  8.6   69     5  10
## 11   11     7      NA  6.9   74     5  11
## 12   12    16     256  9.7   69     5  12
## 13   13    11     290  9.2   66     5  13
## 14   14    14     274 10.9   68     5  14
## 15   15    18      65 13.2   58     5  15
## 16   16    14     334 11.5   64     5  16
## 17   17    34     307 12.0   66     5  17
## 18   18     6      78 18.4   57     5  18
## 19   19    30     322 11.5   68     5  19
## 20   20    11      44  9.7   62     5  20
## 21   21     1       8  9.7   59     5  21
## 22   22    11     320 16.6   73     5  22
## 23   23     4      25  9.7   61     5  23
## 24   24    32      92 12.0   61     5  24
## 25   25    NA      66 16.6   57     5  25
## 26   26    NA     266 14.9   58     5  26
## 27   27    NA      NA  8.0   57     5  27
## 28   28    23      13 12.0   67     5  28
## 29   29    45     252 14.9   81     5  29
## 30   30   115     223  5.7   79     5  30
## 31   31    37     279  7.4   76     5  31
## 32   32    NA     286  8.6   78     6   1
## 33   33    NA     287  9.7   74     6   2
## 34   34    NA     242 16.1   67     6   3
## 35   35    NA     186  9.2   84     6   4
## 36   36    NA     220  8.6   85     6   5
## 37   37    NA     264 14.3   79     6   6
## 38   38    29     127  9.7   82     6   7
## 39   39    NA     273  6.9   87     6   8
## 40   40    71     291 13.8   90     6   9
## 41   41    39     323 11.5   87     6  10
## 42   42    NA     259 10.9   93     6  11
## 43   43    NA     250  9.2   92     6  12
## 44   44    23     148  8.0   82     6  13
## 45   45    NA     332 13.8   80     6  14
## 46   46    NA     322 11.5   79     6  15
## 47   47    21     191 14.9   77     6  16
## 48   48    37     284 20.7   72     6  17
## 49   49    20      37  9.2   65     6  18
## 50   50    12     120 11.5   73     6  19
## 51   51    13     137 10.3   76     6  20
## 52   52    NA     150  6.3   77     6  21
## 53   53    NA      59  1.7   76     6  22
## 54   54    NA      91  4.6   76     6  23
## 55   55    NA     250  6.3   76     6  24
## 56   56    NA     135  8.0   75     6  25
## 57   57    NA     127  8.0   78     6  26
## 58   58    NA      47 10.3   73     6  27
## 59   59    NA      98 11.5   80     6  28
## 60   60    NA      31 14.9   77     6  29
## 61   61    NA     138  8.0   83     6  30
## 62   62   135     269  4.1   84     7   1
## 63   63    49     248  9.2   85     7   2
## 64   64    32     236  9.2   81     7   3
## 65   65    NA     101 10.9   84     7   4
## 66   66    64     175  4.6   83     7   5
## 67   67    40     314 10.9   83     7   6
## 68   68    77     276  5.1   88     7   7
## 69   69    97     267  6.3   92     7   8
## 70   70    97     272  5.7   92     7   9
## 71   71    85     175  7.4   89     7  10
## 72   72    NA     139  8.6   82     7  11
## 73   73    10     264 14.3   73     7  12
## 74   74    27     175 14.9   81     7  13
## 75   75    NA     291 14.9   91     7  14
## 76   76     7      48 14.3   80     7  15
## 77   77    48     260  6.9   81     7  16
## 78   78    35     274 10.3   82     7  17
## 79   79    61     285  6.3   84     7  18
## 80   80    79     187  5.1   87     7  19
## 81   81    63     220 11.5   85     7  20
## 82   82    16       7  6.9   74     7  21
## 83   83    NA     258  9.7   81     7  22
## 84   84    NA     295 11.5   82     7  23
## 85   85    80     294  8.6   86     7  24
## 86   86   108     223  8.0   85     7  25
## 87   87    20      81  8.6   82     7  26
## 88   88    52      82 12.0   86     7  27
## 89   89    82     213  7.4   88     7  28
## 90   90    50     275  7.4   86     7  29
## 91   91    64     253  7.4   83     7  30
## 92   92    59     254  9.2   81     7  31
## 93   93    39      83  6.9   81     8   1
## 94   94     9      24 13.8   81     8   2
## 95   95    16      77  7.4   82     8   3
## 96   96    78      NA  6.9   86     8   4
## 97   97    35      NA  7.4   85     8   5
## 98   98    66      NA  4.6   87     8   6
## 99   99   122     255  4.0   89     8   7
## 100 100    89     229 10.3   90     8   8
## 101 101   110     207  8.0   90     8   9
## 102 102    NA     222  8.6   92     8  10
## 103 103    NA     137 11.5   86     8  11
## 104 104    44     192 11.5   86     8  12
## 105 105    28     273 11.5   82     8  13
## 106 106    65     157  9.7   80     8  14
## 107 107    NA      64 11.5   79     8  15
## 108 108    22      71 10.3   77     8  16
## 109 109    59      51  6.3   79     8  17
## 110 110    23     115  7.4   76     8  18
## 111 111    31     244 10.9   78     8  19
## 112 112    44     190 10.3   78     8  20
## 113 113    21     259 15.5   77     8  21
## 114 114     9      36 14.3   72     8  22
## 115 115    NA     255 12.6   75     8  23
## 116 116    45     212  9.7   79     8  24
## 117 117   168     238  3.4   81     8  25
## 118 118    73     215  8.0   86     8  26
## 119 119    NA     153  5.7   88     8  27
## 120 120    76     203  9.7   97     8  28
## 121 121   118     225  2.3   94     8  29
## 122 122    84     237  6.3   96     8  30
## 123 123    85     188  6.3   94     8  31
## 124 124    96     167  6.9   91     9   1
## 125 125    78     197  5.1   92     9   2
## 126 126    73     183  2.8   93     9   3
## 127 127    91     189  4.6   93     9   4
## 128 128    47      95  7.4   87     9   5
## 129 129    32      92 15.5   84     9   6
## 130 130    20     252 10.9   80     9   7
## 131 131    23     220 10.3   78     9   8
## 132 132    21     230 10.9   75     9   9
## 133 133    24     259  9.7   73     9  10
## 134 134    44     236 14.9   81     9  11
## 135 135    21     259 15.5   76     9  12
## 136 136    28     238  6.3   77     9  13
## 137 137     9      24 10.9   71     9  14
## 138 138    13     112 11.5   71     9  15
## 139 139    46     237  6.9   78     9  16
## 140 140    18     224 13.8   67     9  17
## 141 141    13      27 10.3   76     9  18
## 142 142    24     238 10.3   68     9  19
## 143 143    16     201  8.0   82     9  20
## 144 144    13     238 12.6   64     9  21
## 145 145    23      14  9.2   71     9  22
## 146 146    36     139 10.3   81     9  23
## 147 147     7      49 10.3   69     9  24
## 148 148    14      20 16.6   63     9  25
## 149 149    30     193  6.9   70     9  26
## 150 150    NA     145 13.2   77     9  27
## 151 151    14     191 14.3   75     9  28
## 152 152    18     131  8.0   76     9  29
## 153 153    20     223 11.5   68     9  30
airquality <- data.frame(airquality)


#1. Use the summary function to gain an overview of the data set. Then display the mean and median for at least two attributes.

#Summary Function
summary(airquality)
##        X           Ozone           Solar.R           Wind       
##  Min.   :  1   Min.   :  1.00   Min.   :  7.0   Min.   : 1.700  
##  1st Qu.: 39   1st Qu.: 18.00   1st Qu.:115.8   1st Qu.: 7.400  
##  Median : 77   Median : 31.50   Median :205.0   Median : 9.700  
##  Mean   : 77   Mean   : 42.13   Mean   :185.9   Mean   : 9.958  
##  3rd Qu.:115   3rd Qu.: 63.25   3rd Qu.:258.8   3rd Qu.:11.500  
##  Max.   :153   Max.   :168.00   Max.   :334.0   Max.   :20.700  
##                NA's   :37       NA's   :7                       
##       Temp           Month            Day      
##  Min.   :56.00   Min.   :5.000   Min.   : 1.0  
##  1st Qu.:72.00   1st Qu.:6.000   1st Qu.: 8.0  
##  Median :79.00   Median :7.000   Median :16.0  
##  Mean   :77.88   Mean   :6.993   Mean   :15.8  
##  3rd Qu.:85.00   3rd Qu.:8.000   3rd Qu.:23.0  
##  Max.   :97.00   Max.   :9.000   Max.   :31.0  
## 
#Returning Mean and Medican
median(airquality$Wind)
## [1] 9.7
mean(airquality$Wind)
## [1] 9.957516
median(airquality$Temp)
## [1] 79
mean(airquality$Temp)
## [1] 77.88235
#2. Create a new data frame with a subset of the columns and rows. Make sure to rename it.

# Subset filtering process by Temp > 80 and Wind > 10; Reporting Month, Day, Temperature and Wind
airqualitysubsetframe <- data.frame(subset(airquality, Temp > 80 & Wind >10,  select = c(Wind, Temp, Month, Day)))
airqualitysubsetframe
##     Wind Temp Month Day
## 29  14.9   81     5  29
## 40  13.8   90     6   9
## 41  11.5   87     6  10
## 42  10.9   93     6  11
## 65  10.9   84     7   4
## 67  10.9   83     7   6
## 74  14.9   81     7  13
## 75  14.9   91     7  14
## 78  10.3   82     7  17
## 81  11.5   85     7  20
## 84  11.5   82     7  23
## 88  12.0   86     7  27
## 94  13.8   81     8   2
## 100 10.3   90     8   8
## 103 11.5   86     8  11
## 104 11.5   86     8  12
## 105 11.5   82     8  13
## 129 15.5   84     9   6
## 134 14.9   81     9  11
## 146 10.3   81     9  23
#3. Create new column names for the new data frame.

airqualitysubsetframe <- setNames(airqualitysubsetframe, c("Wind Speed", "Temperature", "Month", "Day"))
airqualitysubsetframe
##     Wind Speed Temperature Month Day
## 29        14.9          81     5  29
## 40        13.8          90     6   9
## 41        11.5          87     6  10
## 42        10.9          93     6  11
## 65        10.9          84     7   4
## 67        10.9          83     7   6
## 74        14.9          81     7  13
## 75        14.9          91     7  14
## 78        10.3          82     7  17
## 81        11.5          85     7  20
## 84        11.5          82     7  23
## 88        12.0          86     7  27
## 94        13.8          81     8   2
## 100       10.3          90     8   8
## 103       11.5          86     8  11
## 104       11.5          86     8  12
## 105       11.5          82     8  13
## 129       15.5          84     9   6
## 134       14.9          81     9  11
## 146       10.3          81     9  23
#4. Use the summary function to create an overview of your new data frame.
#The print the mean and median for the same two attributes. Please compare.

#Summary Function
summary(airqualitysubsetframe)
##    Wind Speed     Temperature        Month          Day       
##  Min.   :10.30   Min.   :81.00   Min.   :5.0   Min.   : 2.00  
##  1st Qu.:10.90   1st Qu.:81.75   1st Qu.:7.0   1st Qu.: 8.75  
##  Median :11.50   Median :84.00   Median :7.0   Median :11.50  
##  Mean   :12.37   Mean   :84.80   Mean   :7.3   Mean   :13.45  
##  3rd Qu.:14.07   3rd Qu.:86.25   3rd Qu.:8.0   3rd Qu.:17.75  
##  Max.   :15.50   Max.   :93.00   Max.   :9.0   Max.   :29.00
#Returning Mean and Medican
median(airqualitysubsetframe$Wind)
## [1] 11.5
mean(airqualitysubsetframe$Wind)
## [1] 12.365
median(airqualitysubsetframe$Temperature)
## [1] 84
mean(airqualitysubsetframe$Temperature)
## [1] 84.8
#By Comparing, we can deduct that the subset frame has a new mean and median for the new data,
#providing new information when the Temperature is more than 80 and Wind > 10.

#5. For at least 3 values in a column please rename so that every value in that column is renamed.
#For example, suppose I have 20 values of the letter “e” in one column. Rename those values so that all 20 would show as “excellent”.


airquality$Month[airquality$Month == 5 & airquality$Day < 10] <- 1
airquality$Ozone[is.na(airquality$Ozone)] <- 0
airquality
##       X Ozone Solar.R Wind Temp Month Day
## 1     1    41     190  7.4   67     1   1
## 2     2    36     118  8.0   72     1   2
## 3     3    12     149 12.6   74     1   3
## 4     4    18     313 11.5   62     1   4
## 5     5     0      NA 14.3   56     1   5
## 6     6    28      NA 14.9   66     1   6
## 7     7    23     299  8.6   65     1   7
## 8     8    19      99 13.8   59     1   8
## 9     9     8      19 20.1   61     1   9
## 10   10     0     194  8.6   69     5  10
## 11   11     7      NA  6.9   74     5  11
## 12   12    16     256  9.7   69     5  12
## 13   13    11     290  9.2   66     5  13
## 14   14    14     274 10.9   68     5  14
## 15   15    18      65 13.2   58     5  15
## 16   16    14     334 11.5   64     5  16
## 17   17    34     307 12.0   66     5  17
## 18   18     6      78 18.4   57     5  18
## 19   19    30     322 11.5   68     5  19
## 20   20    11      44  9.7   62     5  20
## 21   21     1       8  9.7   59     5  21
## 22   22    11     320 16.6   73     5  22
## 23   23     4      25  9.7   61     5  23
## 24   24    32      92 12.0   61     5  24
## 25   25     0      66 16.6   57     5  25
## 26   26     0     266 14.9   58     5  26
## 27   27     0      NA  8.0   57     5  27
## 28   28    23      13 12.0   67     5  28
## 29   29    45     252 14.9   81     5  29
## 30   30   115     223  5.7   79     5  30
## 31   31    37     279  7.4   76     5  31
## 32   32     0     286  8.6   78     6   1
## 33   33     0     287  9.7   74     6   2
## 34   34     0     242 16.1   67     6   3
## 35   35     0     186  9.2   84     6   4
## 36   36     0     220  8.6   85     6   5
## 37   37     0     264 14.3   79     6   6
## 38   38    29     127  9.7   82     6   7
## 39   39     0     273  6.9   87     6   8
## 40   40    71     291 13.8   90     6   9
## 41   41    39     323 11.5   87     6  10
## 42   42     0     259 10.9   93     6  11
## 43   43     0     250  9.2   92     6  12
## 44   44    23     148  8.0   82     6  13
## 45   45     0     332 13.8   80     6  14
## 46   46     0     322 11.5   79     6  15
## 47   47    21     191 14.9   77     6  16
## 48   48    37     284 20.7   72     6  17
## 49   49    20      37  9.2   65     6  18
## 50   50    12     120 11.5   73     6  19
## 51   51    13     137 10.3   76     6  20
## 52   52     0     150  6.3   77     6  21
## 53   53     0      59  1.7   76     6  22
## 54   54     0      91  4.6   76     6  23
## 55   55     0     250  6.3   76     6  24
## 56   56     0     135  8.0   75     6  25
## 57   57     0     127  8.0   78     6  26
## 58   58     0      47 10.3   73     6  27
## 59   59     0      98 11.5   80     6  28
## 60   60     0      31 14.9   77     6  29
## 61   61     0     138  8.0   83     6  30
## 62   62   135     269  4.1   84     7   1
## 63   63    49     248  9.2   85     7   2
## 64   64    32     236  9.2   81     7   3
## 65   65     0     101 10.9   84     7   4
## 66   66    64     175  4.6   83     7   5
## 67   67    40     314 10.9   83     7   6
## 68   68    77     276  5.1   88     7   7
## 69   69    97     267  6.3   92     7   8
## 70   70    97     272  5.7   92     7   9
## 71   71    85     175  7.4   89     7  10
## 72   72     0     139  8.6   82     7  11
## 73   73    10     264 14.3   73     7  12
## 74   74    27     175 14.9   81     7  13
## 75   75     0     291 14.9   91     7  14
## 76   76     7      48 14.3   80     7  15
## 77   77    48     260  6.9   81     7  16
## 78   78    35     274 10.3   82     7  17
## 79   79    61     285  6.3   84     7  18
## 80   80    79     187  5.1   87     7  19
## 81   81    63     220 11.5   85     7  20
## 82   82    16       7  6.9   74     7  21
## 83   83     0     258  9.7   81     7  22
## 84   84     0     295 11.5   82     7  23
## 85   85    80     294  8.6   86     7  24
## 86   86   108     223  8.0   85     7  25
## 87   87    20      81  8.6   82     7  26
## 88   88    52      82 12.0   86     7  27
## 89   89    82     213  7.4   88     7  28
## 90   90    50     275  7.4   86     7  29
## 91   91    64     253  7.4   83     7  30
## 92   92    59     254  9.2   81     7  31
## 93   93    39      83  6.9   81     8   1
## 94   94     9      24 13.8   81     8   2
## 95   95    16      77  7.4   82     8   3
## 96   96    78      NA  6.9   86     8   4
## 97   97    35      NA  7.4   85     8   5
## 98   98    66      NA  4.6   87     8   6
## 99   99   122     255  4.0   89     8   7
## 100 100    89     229 10.3   90     8   8
## 101 101   110     207  8.0   90     8   9
## 102 102     0     222  8.6   92     8  10
## 103 103     0     137 11.5   86     8  11
## 104 104    44     192 11.5   86     8  12
## 105 105    28     273 11.5   82     8  13
## 106 106    65     157  9.7   80     8  14
## 107 107     0      64 11.5   79     8  15
## 108 108    22      71 10.3   77     8  16
## 109 109    59      51  6.3   79     8  17
## 110 110    23     115  7.4   76     8  18
## 111 111    31     244 10.9   78     8  19
## 112 112    44     190 10.3   78     8  20
## 113 113    21     259 15.5   77     8  21
## 114 114     9      36 14.3   72     8  22
## 115 115     0     255 12.6   75     8  23
## 116 116    45     212  9.7   79     8  24
## 117 117   168     238  3.4   81     8  25
## 118 118    73     215  8.0   86     8  26
## 119 119     0     153  5.7   88     8  27
## 120 120    76     203  9.7   97     8  28
## 121 121   118     225  2.3   94     8  29
## 122 122    84     237  6.3   96     8  30
## 123 123    85     188  6.3   94     8  31
## 124 124    96     167  6.9   91     9   1
## 125 125    78     197  5.1   92     9   2
## 126 126    73     183  2.8   93     9   3
## 127 127    91     189  4.6   93     9   4
## 128 128    47      95  7.4   87     9   5
## 129 129    32      92 15.5   84     9   6
## 130 130    20     252 10.9   80     9   7
## 131 131    23     220 10.3   78     9   8
## 132 132    21     230 10.9   75     9   9
## 133 133    24     259  9.7   73     9  10
## 134 134    44     236 14.9   81     9  11
## 135 135    21     259 15.5   76     9  12
## 136 136    28     238  6.3   77     9  13
## 137 137     9      24 10.9   71     9  14
## 138 138    13     112 11.5   71     9  15
## 139 139    46     237  6.9   78     9  16
## 140 140    18     224 13.8   67     9  17
## 141 141    13      27 10.3   76     9  18
## 142 142    24     238 10.3   68     9  19
## 143 143    16     201  8.0   82     9  20
## 144 144    13     238 12.6   64     9  21
## 145 145    23      14  9.2   71     9  22
## 146 146    36     139 10.3   81     9  23
## 147 147     7      49 10.3   69     9  24
## 148 148    14      20 16.6   63     9  25
## 149 149    30     193  6.9   70     9  26
## 150 150     0     145 13.2   77     9  27
## 151 151    14     191 14.3   75     9  28
## 152 152    18     131  8.0   76     9  29
## 153 153    20     223 11.5   68     9  30
#6. Display enough rows to see examples of all of steps 1-5 above.

#Done

#7. BONUS – place the original .csv in a github file and have R read from the link. This will be a very useful skill as you progress in your data science education and career.

#Done