library(gridExtra)
## Warning: package 'gridExtra' was built under R version 3.2.5
library(grid)
library(car)
## Warning: package 'car' was built under R version 3.2.5
library(intsvy)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
# Veri setlerini yeniden hesaplanmis ESCS degerleri ile birlestirme

    # 2003

      colnames(escs_2003)[1:3] <- c("CNT","SCHOOLID","STIDSTD") 

      pisa_2003_stu <- merge(pisa_2003_stu,escs_2003,by=c("CNT","SCHOOLID","STIDSTD") ,all=TRUE)

    # 2006

      levels(escs_2006$cnt)
##  [1] "ARG" "AUS" "AUT" "BEL" "BGR" "BRA" "CAN" "CHE" "CHL" "COL" "CZE"
## [12] "DEU" "DNK" "ESP" "EST" "FIN" "FRA" "GBR" "GRC" "HKG" "HRV" "HUN"
## [23] "IDN" "IRL" "ISL" "ISR" "ITA" "JOR" "JPN" "KOR" "LTU" "LUX" "LVA"
## [34] "MAC" "MEX" "MNE" "NLD" "NOR" "NZL" "POL" "PRT" "QAT" "ROU" "RUS"
## [45] "SVK" "SVN" "SWE" "TAP" "THA" "TUN" "TUR" "URY" "USA"
      levels(escs_2006$cnt) <- c("Argentina","Australia","Austria","Belgium","Bulgaria"
                                     ,"Brazil","Canada","Switzerland","Chile","Colombia",
                                     "Czech Republic","Germany","Denmark","Spain","Estonia",
                                     "Finland","France","United Kingdom","Greece",
                                     "Hong Kong-China","Croatia","Hungary","Indonesia","Ireland",
                                     "Iceland","Israel", "Italy","Jordan","Japan","Korea",
                                     "Lithuania","Luxembourg","Latvia","Macao-China",
                                     "Mexico","Montenegro","Netherlands","Norway","New Zealand",
                                     "Poland","Portugal","Qatar","Romania","Russian Federation",
                                     "Slovak Republic","Slovenia ","Sweden",
                                     "Chinese Taipei","Thailand","Tunisia","Turkey","Uruguay",
                                     "United States")

          levels(escs_2006$cnt)
##  [1] "Argentina"          "Australia"          "Austria"           
##  [4] "Belgium"            "Bulgaria"           "Brazil"            
##  [7] "Canada"             "Switzerland"        "Chile"             
## [10] "Colombia"           "Czech Republic"     "Germany"           
## [13] "Denmark"            "Spain"              "Estonia"           
## [16] "Finland"            "France"             "United Kingdom"    
## [19] "Greece"             "Hong Kong-China"    "Croatia"           
## [22] "Hungary"            "Indonesia"          "Ireland"           
## [25] "Iceland"            "Israel"             "Italy"             
## [28] "Jordan"             "Japan"              "Korea"             
## [31] "Lithuania"          "Luxembourg"         "Latvia"            
## [34] "Macao-China"        "Mexico"             "Montenegro"        
## [37] "Netherlands"        "Norway"             "New Zealand"       
## [40] "Poland"             "Portugal"           "Qatar"             
## [43] "Romania"            "Russian Federation" "Slovak Republic"   
## [46] "Slovenia "          "Sweden"             "Chinese Taipei"    
## [49] "Thailand"           "Tunisia"            "Turkey"            
## [52] "Uruguay"            "United States"
        colnames(escs_2006)[1:3] <- c("CNT","SCHOOLID","STIDSTD")
        
        pisa_2006_stu <- merge(pisa_2006_stu,escs_2006,by=c("CNT","SCHOOLID","STIDSTD") ,all=TRUE)

    # 2009

        levels(escs_2009$cnt)
##  [1] "ALB" "ARE" "ARG" "AUS" "AUT" "BEL" "BGR" "BRA" "CAN" "CHE" "CHL"
## [12] "COL" "CRI" "CZE" "DEU" "DNK" "ESP" "EST" "FIN" "FRA" "GBR" "GEO"
## [23] "GRC" "HKG" "HRV" "HUN" "IDN" "IRL" "ISL" "ISR" "ITA" "JOR" "JPN"
## [34] "KAZ" "KOR" "LTU" "LUX" "LVA" "MAC" "MDA" "MEX" "MLT" "MNE" "MYS"
## [45] "NLD" "NOR" "NZL" "PER" "POL" "PRT" "QAT" "ROU" "RUS" "SGP" "SVK"
## [56] "SVN" "SWE" "TAP" "THA" "TTO" "TUN" "TUR" "URY" "USA"
          levels(escs_2009$cnt) <- c("Albania","United Arab Emirates","Argentina","Australia",
                                     "Austria","Belgium","Bulgaria","Brazil","Canada",
                                     "Switzerland","Chile","Colombia","Costa Rica",
                                     "Czech Republic","Germany","Denmark",
                                     "Spain","Estonia","Finland","France","United Kingdom",
                                     "Georgia","Greece","Hong Kong-China","Croatia","Hungary",
                                     "Indonesia","Ireland","Iceland","Israel", "Italy","Jordan",
                                     "Japan","Kazakhstan","Korea","Lithuania","Luxembourg",
                                     "Latvia","Macao-China","Republic of Moldova","Mexico",
                                     "Malta","Montenegro","Malaysia","Netherlands","Norway",
                                     "New Zealand","Peru","Poland","Portugal","Qatar","Romania",
                                     "Russian Federation","Singapore","Slovak Republic",
                                     "Slovenia","Sweden","Chinese Taipei","Thailand",
                                     "Trinidad and Tobago","Tunisia","Turkey","Uruguay",
                                     "United States")

          levels(escs_2009$cnt)
##  [1] "Albania"              "United Arab Emirates" "Argentina"           
##  [4] "Australia"            "Austria"              "Belgium"             
##  [7] "Bulgaria"             "Brazil"               "Canada"              
## [10] "Switzerland"          "Chile"                "Colombia"            
## [13] "Costa Rica"           "Czech Republic"       "Germany"             
## [16] "Denmark"              "Spain"                "Estonia"             
## [19] "Finland"              "France"               "United Kingdom"      
## [22] "Georgia"              "Greece"               "Hong Kong-China"     
## [25] "Croatia"              "Hungary"              "Indonesia"           
## [28] "Ireland"              "Iceland"              "Israel"              
## [31] "Italy"                "Jordan"               "Japan"               
## [34] "Kazakhstan"           "Korea"                "Lithuania"           
## [37] "Luxembourg"           "Latvia"               "Macao-China"         
## [40] "Republic of Moldova"  "Mexico"               "Malta"               
## [43] "Montenegro"           "Malaysia"             "Netherlands"         
## [46] "Norway"               "New Zealand"          "Peru"                
## [49] "Poland"               "Portugal"             "Qatar"               
## [52] "Romania"              "Russian Federation"   "Singapore"           
## [55] "Slovak Republic"      "Slovenia"             "Sweden"              
## [58] "Chinese Taipei"       "Thailand"             "Trinidad and Tobago" 
## [61] "Tunisia"              "Turkey"               "Uruguay"             
## [64] "United States"
          colnames(escs_2009)[1:3] <- c("CNT","SCHOOLID","StIDStd")
        
         pisa_2009_stu <- merge(pisa_2009_stu,escs_2009,by=c("CNT","SCHOOLID","StIDStd") ,all=TRUE)

      # 2012

          levels(escs_2012$cnt)
##  [1] "ALB" "ARE" "ARG" "AUS" "AUT" "BEL" "BGR" "BRA" "CAN" "CHE" "CHL"
## [12] "COL" "CRI" "CZE" "DEU" "DNK" "ESP" "EST" "FIN" "FRA" "GBR" "GRC"
## [23] "HKG" "HRV" "HUN" "IDN" "IRL" "ISL" "ISR" "ITA" "JOR" "JPN" "KAZ"
## [34] "KOR" "LTU" "LUX" "LVA" "MAC" "MEX" "MNE" "MYS" "NLD" "NOR" "NZL"
## [45] "PER" "POL" "PRT" "QAT" "QUC" "ROU" "RUS" "SGP" "SVK" "SVN" "SWE"
## [56] "TAP" "THA" "TUN" "TUR" "URY" "USA" "VNM"
          levels(escs_2012$cnt) <- c("Albania","United Arab Emirates","Argentina","Australia",
                                     "Austria","Belgium",
                                     "Bulgaria","Brazil","Canada",
                                     "Switzerland","Chile","Colombia","Costa Rica",
                                     "Czech Republic","Germany","Denmark",
                                     "Spain","Estonia","Finland","France","United Kingdom",
                                     "Greece","Hong Kong-China",
                                     "Croatia","Hungary","Indonesia","Ireland","Iceland",
                                     "Israel","Italy","Jordan","Japan","Kazakhstan","Korea",
                                     "Lithuania","Luxembourg","Latvia","Macao-China",
                                     "Mexico","Montenegro","Malaysia","Netherlands","Norway",
                                     "New Zealand","Peru","Poland","Portugal","Qatar",
                                     "Shanghai-China","Romania","Russian Federation","Singapore",
                                     "Slovak Republic","Slovenia","Sweden","Chinese Taipei",
                                     "Thailand","Tunisia","Turkey",
                                     "Uruguay","United States of America","Viet Nam")

          levels(escs_2012$cnt)
##  [1] "Albania"                  "United Arab Emirates"    
##  [3] "Argentina"                "Australia"               
##  [5] "Austria"                  "Belgium"                 
##  [7] "Bulgaria"                 "Brazil"                  
##  [9] "Canada"                   "Switzerland"             
## [11] "Chile"                    "Colombia"                
## [13] "Costa Rica"               "Czech Republic"          
## [15] "Germany"                  "Denmark"                 
## [17] "Spain"                    "Estonia"                 
## [19] "Finland"                  "France"                  
## [21] "United Kingdom"           "Greece"                  
## [23] "Hong Kong-China"          "Croatia"                 
## [25] "Hungary"                  "Indonesia"               
## [27] "Ireland"                  "Iceland"                 
## [29] "Israel"                   "Italy"                   
## [31] "Jordan"                   "Japan"                   
## [33] "Kazakhstan"               "Korea"                   
## [35] "Lithuania"                "Luxembourg"              
## [37] "Latvia"                   "Macao-China"             
## [39] "Mexico"                   "Montenegro"              
## [41] "Malaysia"                 "Netherlands"             
## [43] "Norway"                   "New Zealand"             
## [45] "Peru"                     "Poland"                  
## [47] "Portugal"                 "Qatar"                   
## [49] "Shanghai-China"           "Romania"                 
## [51] "Russian Federation"       "Singapore"               
## [53] "Slovak Republic"          "Slovenia"                
## [55] "Sweden"                   "Chinese Taipei"          
## [57] "Thailand"                 "Tunisia"                 
## [59] "Turkey"                   "Uruguay"                 
## [61] "United States of America" "Viet Nam"
        colnames(escs_2012)[1:3] <- c("CNT","SCHOOLID","StIDStd")
        pisa_2012_stu <- merge(pisa_2012_stu,escs_2012,by=c("CNT","SCHOOLID","StIDStd") ,all=TRUE)
# Simdide 2003, 2006, 2009, 2012,2015 yillarinda 2015 icin yaptigimiz gibi Turkiye verisini suzelim.

        pisa_2015_stu_TUR <- subset(pisa_2015_stu,CNT=='Turkey')
        pisa_2012_stu_TUR <- subset(pisa_2012_stu,CNT=="Turkey")
        pisa_2009_stu_TUR <- subset(pisa_2009_stu,CNT=='Turkey')
        pisa_2006_stu_TUR <- subset(pisa_2006_stu,CNT=='Turkey')
        pisa_2003_stu_TUR <- subset(pisa_2003_stu,CNT=='TUR')


  # OECD verisini suzelim

        pisa_2015_stu_OECD <- subset(pisa_2015_stu,OECD=="Yes")
        pisa_2012_stu_OECD <- subset(pisa_2012_stu,OECD=="OECD")
        pisa_2009_stu_OECD <- subset(pisa_2009_stu,OECD=="OECD")
        pisa_2006_stu_OECD <- subset(pisa_2006_stu,OECD=="OECD")
        pisa_2003_stu_OECD <- subset(pisa_2003_stu,OECD=="OECD country")

  # AB verisini suzelim

        AB <- c("AUT","BEL","BGR","HRV","CYP","CZE","DNK","EST","FIN","FRA","DEU","GRC","HUN",
                "IRL","ITA","LVA","LTU","LUX","MLT","NLD","POL","PRT","ROU","SVK","SVN","ESP",
                "SWE")

        AB2 <- c("Austria","Belgium","Bulgaria","Croatia","Cyprus","Czech Republic","Denmark",
                 "Estonia","Finland","France","Germany","Greece","Hungary","Ireland","Italy",
                 "Latvia","Lithuania","Luxembourg","Malta","Netherlands","Poland","Portugal",
                 "Romania","Slovak Republic","Slovenia ","Spain","Sweden")

        AB3 <- c("Austria","Belgium","Bulgaria","Croatia","Cyprus","Czech Republic","Denmark",
                 "Estonia","Finland","France","Germany","Greece","Hungary","Ireland","Italy",
                 "Latvia","Lithuania","Luxembourg","Malta","Netherlands","Poland","Portugal",
                 "Romania","Slovak Republic","Slovenia","Spain","Sweden")
        

            pisa_2003_stu_AB <- subset(pisa_2003_stu, CNT %in% AB)
            pisa_2006_stu_AB <- subset(pisa_2006_stu, CNT %in% AB2)
            pisa_2009_stu_AB <- subset(pisa_2009_stu, CNT %in% AB3)
            pisa_2012_stu_AB <- subset(pisa_2012_stu, CNT %in% AB3)
            pisa_2015_stu_AB <- subset(pisa_2015_stu, CNT %in% AB3)

# Simdide 2003, 2006, 2009, 2012,2015 yillarinda Okul seviyesinde Turkiye verisini suzelim

        pisa_2015_sch_TUR <- subset(pisa_2015_sch,CNT=='Turkey')
        pisa_2012_sch_TUR <- subset(pisa_2012_sch,CNT=="Turkey")
        pisa_2009_sch_TUR <- subset(pisa_2009_sch,CNT=='Turkey')
        pisa_2006_sch_TUR <- subset(pisa_2006_sch,CNT=='Turkey')
        pisa_2003_sch_TUR <- subset(pisa_2003_sch,CNT=='TUR')


  pisa_2015_stu_TUR$bolge <- NA

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 01: TR1 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 02: TR1 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 03: TR1 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "ISTANBUL"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 04: TR2 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 05: TR2 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 06: TR2 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "BatiMarmara"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 07: TR3 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 08: TR3 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 09: TR3 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "Ege"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 10: TR4 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 11: TR4 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 12: TR4 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "DoguMarmara"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 13: TR5 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 14: TR5 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 15: TR5 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "BatiAnadolu"
                    
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 16: TR6 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 17: TR6 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 18: TR6 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "Akdeniz"
                    
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 19: TR7 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 20: TR7 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 21: TR7 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "OrtaAnadolu"
                            
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 22: TR8 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 23: TR8 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 24: TR8 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "BatiKaradeniz"
                    
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 25: TR9 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 26: TR9 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 27: TR9 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "DoguKaradeniz"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 28: TRA BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 29: TRA GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 30: TRA VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "KuzeydoguAnadolu"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 31: TRB BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 32: TRB GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 33: TRB VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "OrtadoguAnadolu"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 34: TRC BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 35: TRC GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 36: TRC VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "GuneydoguAnadolu"

    pisa_2015_stu_TUR$bolge <- factor(pisa_2015_stu_TUR$bolge)
  
  # Okul ve Ogrenci seviyesindeki verileri birlestirelim

        pisa_2003_TUR <- merge(pisa_2003_stu_TUR,
                               pisa_2003_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

       
        pisa_2006_TUR <- merge(pisa_2006_stu_TUR,
                               pisa_2006_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

        pisa_2009_TUR <- merge(pisa_2009_stu_TUR,
                               pisa_2009_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

         pisa_2012_TUR <- merge(pisa_2009_stu_TUR,
                               pisa_2009_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

        pisa_2015_TUR <- merge(pisa_2015_stu_TUR,
                               pisa_2015_sch_TUR,
                               by=c("CNT","CNTSCHID") ,all=TRUE)

        pisa_2015      <- merge(pisa_2015_stu,
                                pisa_2015_sch,
                                by=c("CNT","CNTSCHID") ,all=TRUE)

         pisa_2015_OECD <- subset(pisa_2015,OECD.x=="Yes")

         pisa_2015_AB <- subset(pisa_2015, CNT %in% AB3)

cor(pisa_2015_stu_TUR\(DISCLISCI,as.numeric(pisa_2015_stu_TUR\)ST097Q01TA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(DISCLISCI,as.numeric(pisa_2015_stu_TUR\)ST097Q02TA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(DISCLISCI,as.numeric(pisa_2015_stu_TUR\)ST097Q03TA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(DISCLISCI,as.numeric(pisa_2015_stu_TUR\)ST097Q04TA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(DISCLISCI,as.numeric(pisa_2015_stu_TUR\)ST097Q05TA),use=“pairwise.complete.obs”)

ST097Q01TA- Sinifta ögrenciler ögretmeni dinlemiyor

   tur <- pisa2015.table(variable="ST097Q01TA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST097Q01TA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST097Q01TA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST097Q01TA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST097Q01TA, dat=ab,mean)

   q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST097Q01TA <- factor(q$ST097Q01TA,
                          levels=c("Every lesson","Most lessons","Some lessons","Never or hardly ever"),
                          labels=c("Her zaman","Çogu zaman","Bazen","Hiç")
                          )

  q
##    ST097Q01TA Percentage                      tip
## 1   Her zaman    9.15000                  Türkiye
## 2  Çogu zaman   18.35000                  Türkiye
## 3       Bazen   54.33000                  Türkiye
## 4         Hiç   18.17000                  Türkiye
## 5   Her zaman   10.95200 OECD Ülkeleri Ortalamasi
## 6  Çogu zaman   21.21629 OECD Ülkeleri Ortalamasi
## 7       Bazen   49.46171 OECD Ülkeleri Ortalamasi
## 8         Hiç   18.37029 OECD Ülkeleri Ortalamasi
## 9   Her zaman   11.88231   AB Ülkeleri Ortalamasi
## 10 Çogu zaman   23.50808   AB Ülkeleri Ortalamasi
## 11      Bazen   50.03077   AB Ülkeleri Ortalamasi
## 12        Hiç   14.57846   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST097Q01TA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Sinifta ögrenciler ögretmeni dinlemiyor", 
              x = "", y = "Yüzde",
              fill="Olma Durumu")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 95, ymax = 95)

  plot

## png 
##   2

ST097Q02TA- Sinifta gürültü ve kargasa oluyor

   tur <- pisa2015.table(variable="ST097Q02TA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST097Q02TA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST097Q02TA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST097Q02TA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST097Q02TA, dat=ab,mean)

   q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST097Q02TA <- factor(q$ST097Q02TA,
                          levels=c("Every lesson","Most lessons","Some lessons","Never or hardly ever"),
                          labels=c("Her zaman","Çogu zaman","Bazen","Hiç")
                          )

  q
##    ST097Q02TA Percentage                      tip
## 1   Her zaman   10.40000                  Türkiye
## 2  Çogu zaman   20.12000                  Türkiye
## 3       Bazen   51.64000                  Türkiye
## 4         Hiç   17.85000                  Türkiye
## 5   Her zaman   10.90714 OECD Ülkeleri Ortalamasi
## 6  Çogu zaman   22.23486 OECD Ülkeleri Ortalamasi
## 7       Bazen   48.16429 OECD Ülkeleri Ortalamasi
## 8         Hiç   18.69343 OECD Ülkeleri Ortalamasi
## 9   Her zaman   10.75423   AB Ülkeleri Ortalamasi
## 10 Çogu zaman   22.71231   AB Ülkeleri Ortalamasi
## 11      Bazen   48.42154   AB Ülkeleri Ortalamasi
## 12        Hiç   18.11154   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST097Q02TA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Sinifta gürültü ve kargasa oluyor", 
              x = "", y = "Yüzde",
              fill="Olma Durumu")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 14),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 100, ymax = 100)

  plot

## png 
##   2

ST097Q03TA - Ögretmen ögrencilerin susmasi için uzun süre beklemek zorunda kaliyor

tur <- pisa2015.table(variable="ST097Q03TA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST097Q03TA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST097Q03TA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST097Q03TA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST097Q03TA, dat=ab,mean)

  q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST097Q03TA <- factor(q$ST097Q03TA,
                          levels=c("Every lesson","Most lessons","Some lessons","Never or hardly ever"),
                          labels=c("Her zaman","Çogu zaman","Bazen","Hiç")
                          )

  q
##    ST097Q03TA Percentage                      tip
## 1   Her zaman  11.600000                  Türkiye
## 2  Çogu zaman  18.780000                  Türkiye
## 3       Bazen  47.900000                  Türkiye
## 4         Hiç  21.720000                  Türkiye
## 5   Her zaman   9.661143 OECD Ülkeleri Ortalamasi
## 6  Çogu zaman  19.085143 OECD Ülkeleri Ortalamasi
## 7       Bazen  44.380000 OECD Ülkeleri Ortalamasi
## 8         Hiç  26.875143 OECD Ülkeleri Ortalamasi
## 9   Her zaman   9.989615   AB Ülkeleri Ortalamasi
## 10 Çogu zaman  20.025000   AB Ülkeleri Ortalamasi
## 11      Bazen  44.977692   AB Ülkeleri Ortalamasi
## 12        Hiç  25.009231   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST097Q03TA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Ögretmen ögrencilerin susmasi için uzun süre beklemek zorunda kaliyor", 
              x = "", y = "Yüzde",
              fill="Olma Durumu")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin =100, ymax =100)

  plot

## png 
##   2

ST097Q04TA - Ögrenciler sinifta iyi çalisamiyor

tur <- pisa2015.table(variable="ST097Q04TA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST097Q04TA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST097Q04TA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST097Q04TA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST097Q04TA, dat=ab,mean)

  q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST097Q04TA <- factor(q$ST097Q04TA,
                          levels=c("Every lesson","Most lessons","Some lessons","Never or hardly ever"),
                          labels=c("Her zaman","Çogu zaman","Bazen","Hiç")
                          )

  q
##    ST097Q04TA Percentage                      tip
## 1   Her zaman  11.060000                  Türkiye
## 2  Çogu zaman  23.150000                  Türkiye
## 3       Bazen  49.060000                  Türkiye
## 4         Hiç  16.730000                  Türkiye
## 5   Her zaman   6.828000 OECD Ülkeleri Ortalamasi
## 6  Çogu zaman  14.696571 OECD Ülkeleri Ortalamasi
## 7       Bazen  44.546000 OECD Ülkeleri Ortalamasi
## 8         Hiç  33.929429 OECD Ülkeleri Ortalamasi
## 9   Her zaman   6.993846   AB Ülkeleri Ortalamasi
## 10 Çogu zaman  15.384615   AB Ülkeleri Ortalamasi
## 11      Bazen  45.133846   AB Ülkeleri Ortalamasi
## 12        Hiç  32.488462   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=q$ST097Q04TA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Ögrenciler sinifta iyi çalisamiyor", 
              x = "", y = "Yüzde",
              fill="Olma Durumu")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 100, ymax = 100)

  plot

## png 
##   2

ST097Q05TA - Ders basladiktan uzun süre sonra bile ögrenciler çalismaya baslamiyor

tur <- pisa2015.table(variable="ST097Q05TA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST097Q05TA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST097Q05TA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST097Q05TA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST097Q05TA, dat=ab,mean)

  q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST097Q05TA <- factor(q$ST097Q05TA,
                          levels=c("Every lesson","Most lessons","Some lessons","Never or hardly ever"),
                          labels=c("Her zaman","Çogu zaman","Bazen","Hiç")
                          )

  q
##    ST097Q05TA Percentage                      tip
## 1   Her zaman  11.020000                  Türkiye
## 2  Çogu zaman  20.240000                  Türkiye
## 3       Bazen  45.180000                  Türkiye
## 4         Hiç  23.560000                  Türkiye
## 5   Her zaman   8.716571 OECD Ülkeleri Ortalamasi
## 6  Çogu zaman  16.982571 OECD Ülkeleri Ortalamasi
## 7       Bazen  42.036857 OECD Ülkeleri Ortalamasi
## 8         Hiç  32.264571 OECD Ülkeleri Ortalamasi
## 9   Her zaman   9.243077   AB Ülkeleri Ortalamasi
## 10 Çogu zaman  17.650000   AB Ülkeleri Ortalamasi
## 11      Bazen  41.651154   AB Ülkeleri Ortalamasi
## 12        Hiç  31.454231   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST097Q05TA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Ders basladiktan uzun süre sonra bile ögrenciler çalismaya baslamiyor", 
              x = "", y = "Yüzde",
              fill="Olma Durumu")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 100, ymax = 100)

  plot

## png 
##   2

DIGER ULKELERLE KARSILASTIRMA

a <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_stu,by="CNT")
a$Mean <- -a$Mean

a <- a[order(a[,3],decreasing=T),]
a <- na.omit(a)
a$Mean2 <- round(a$Mean,2)
a$cnt <- NA

for(i in 1:nrow(a)) {
 cod = substr(unique(pisa_2015_stu[which(pisa_2015_stu$CNT==a[i,1]),]$CNTSCHID)[1],1,3)
 if(length(which(country.code[,2]==as.numeric(cod)))!=0){
  a[i,]$cnt=as.character(country.code[which(country.code[,2]==as.numeric(cod)),1])
  }
}

a[which(a$CNT=="B-S-J-G (China)"),]$cnt="CHN"
a[which(a$CNT=="Belgium"),]$cnt="BEL"
a[which(a$CNT=="Brazil"),]$cnt="BRA"
a[which(a$CNT=="Australia"),]$cnt="IDN"
a[which(a$CNT=="Austria"),]$cnt="AUT"

a <- na.omit(a)
a$rank <- 1:nrow(a)


plot <-  ggplot(a, aes(x=rank, y=Mean2,width=.5)) +
    geom_bar(stat='identity',position=position_dodge(1.5),fill="white",colour="black") + 
    scale_y_continuous(limit = c(-1,1.1))+
    theme_bw()+
    labs(title ="Fen Derslerindeki Disiplin Ortami", 
          x = "", y = "Standard Puan",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 18),
          legend.text=element_text(size = 12)) +
    geom_text(aes(y=rep(0,66),label=cnt),angle=90,size=4, 
              stat= "identity", position=position_dodge(1),vjust =0.2,hjust=c(rep(1.25,34),rep(-.25,32)))+
    geom_text(aes(y=Mean2,label=Mean2),angle=90, 
              stat= "identity", position=position_dodge(1),vjust =0.2,hjust=c(rep(-.25,34),rep(1.25,32)))+
  annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin = 54, xmax = 54, ymin = .4, ymax = .4)

plot

## png 
##   2

Cografi Bolgeler

  tur <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_stu_TUR,by="bolge")
  tur$Mean <- -tur$Mean

   tur <- tur[order(tur[,3]),]
   tur[,1] <- factor(tur[,1],levels=tur[,1],labels=tur[,1])

 plot <- ggplot(tur, aes(x=bolge, y=Mean)) +
         geom_bar(stat='identity',position=position_dodge(),width=.7,fill="bisque2") + 
#         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
#                       position = position_dodge(.2),
#                       lty=2,
#                       colour="gray50",
#                       width=0.05)+
        theme_bw()+
        scale_y_continuous(limit = c(-.1,.4)) + 
        geom_text(aes(y=Mean,label=Mean), 
                  stat= "identity", position=position_dodge(.2),
                  hjust=1.2,vjust = -.6,size = 5) +
     labs(title = "Fen Derslerindeki Disiplin Ortami", 
          x = "COGRAFI BOLGE", y = "STANDARD PUAN",
          shape=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          axis.text.x = element_text(angle = 90, hjust = 1,size=13),
          title = element_text(size = 20),
          legend.justification=c(-0.5,-0.2),
          legend.position=c(0,0),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =1, xmax = 1, ymin = 0.95, ymax = 0.95)

  plot

## png 
##   2

SINIF DUZEYI

  tur <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_stu_TUR,by="ST001D01T")
  tur <- tur[2:4,]
  
  tur
##   ST001D01T Freq  Mean s.e.   SD  s.e
## 2   Grade 8   65 -0.19 0.14 0.84 0.08
## 3   Grade 9 1161 -0.18 0.03 0.94 0.03
## 4  Grade 10 3968 -0.11 0.03 0.92 0.02
   oecd <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_stu_OECD,by=c("CNT","ST001D01T"))
   oecd <- aggregate(Mean ~ ST001D01T, data=oecd,mean)
   oecd <- oecd[2:4,]
   oecd
##   ST001D01T       Mean
## 2   Grade 8 -0.2251724
## 3   Grade 9 -0.1115625
## 4  Grade 10  0.1142857
   ab <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_stu_AB,by=c("CNT","ST001D01T"))
   ab <- aggregate(Mean ~ ST001D01T,data=ab,mean)
   ab<- ab[2:4,]
   ab
##   ST001D01T        Mean
## 2   Grade 8 -0.22240000
## 3   Grade 9 -0.11615385
## 4  Grade 10  0.09115385
   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",3),rep("OECD Ülkeleri Ortalamasi",3),rep("AB Ülkeleri Ortalamasi",3)) 

   q[4:6,]$Mean <- oecd$Mean
   q[4:6,]$s.e. <- 0
   q[7:9,]$Mean <- ab$Mean
   q[7:9,]$s.e. <- 0

   q$Mean <- -q$Mean

   q$Mean2 <- round(q$Mean,2)
  
   q$ST001D01T <- factor(q$ST001D01T,
                            levels=c("Grade 8","Grade 9","Grade 10"),
                            labels=c("8. Sinif","9. Sinif","10. Sinif"))
 
   q
##    ST001D01T Freq        Mean s.e.   SD  s.e                      tip
## 2   8. Sinif   65  0.19000000 0.14 0.84 0.08                  Türkiye
## 3   9. Sinif 1161  0.18000000 0.03 0.94 0.03                  Türkiye
## 4  10. Sinif 3968  0.11000000 0.03 0.92 0.02                  Türkiye
## 21  8. Sinif   65  0.22517241 0.00 0.84 0.08 OECD Ülkeleri Ortalamasi
## 31  9. Sinif 1161  0.11156250 0.00 0.94 0.03 OECD Ülkeleri Ortalamasi
## 41 10. Sinif 3968 -0.11428571 0.00 0.92 0.02 OECD Ülkeleri Ortalamasi
## 22  8. Sinif   65  0.22240000 0.00 0.84 0.08   AB Ülkeleri Ortalamasi
## 32  9. Sinif 1161  0.11615385 0.00 0.94 0.03   AB Ülkeleri Ortalamasi
## 42 10. Sinif 3968 -0.09115385 0.00 0.92 0.02   AB Ülkeleri Ortalamasi
##    Mean2
## 2   0.19
## 3   0.18
## 4   0.11
## 21  0.23
## 31  0.11
## 41 -0.11
## 22  0.22
## 32  0.12
## 42 -0.09
 plot <- ggplot(q, aes(x=tip, y=Mean,fill=ST001D01T)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,.05,0,0,0,0,0,0))+
         scale_y_continuous(limit = c(-.2,.5))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(.8),
                  vjust = c(1.2,-1,-1,1.5,-1,-1,-.5,-.5,-.5),
                  hjust = c(.6,.6,.6,.6,.6,.6,1.2,1.2,1.2),
                  size = 6)+
        labs(title = "Fen Derslerindeki Disiplin Ortami", 
          x = "", y = "Standard Puan",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =0.7, xmax = 0.7, ymin = 0.5, ymax = 0.5) 

  plot

## png 
##   2

Okul Tipi

   pisa_2015_TUR$tur <- ifelse(pisa_2015_TUR$SCHLTYPE=="Private Independent" | 
                               pisa_2015_TUR$SCHLTYPE=="Private Government-dependent",1,0)

   tur <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_TUR,by="tur")
   tur <- tur[1:2,]

   pisa_2015_OECD$tur <- ifelse(pisa_2015_OECD$SCHLTYPE=="Private Independent" | 
                                pisa_2015_OECD$SCHLTYPE=="Private Government-dependent",1,0)

   oecd <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_OECD,by=c("CNT","tur"))
   oecd <- aggregate(Mean ~ tur, data=oecd,mean)

   pisa_2015_AB$tur <- ifelse(pisa_2015_AB$SCHLTYPE=="Private Independent" | 
                              pisa_2015_AB$SCHLTYPE=="Private Government-dependent",1,0)

   ab <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_AB,by=c("CNT","tur"))
   ab <- aggregate(Mean ~ tur, data=ab,mean)

   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",2),rep("OECD Ülkeleri Ortalamasi",2),rep("AB Ülkeleri Ortalamasi",2)) 

   q[3:4,]$Mean <- oecd$Mean
   q[3:4,]$s.e. <- 0
   q[5:6,]$Mean <- ab$Mean
   q[5:6,]$s.e. <- 0

   q$tur <- factor(q$tur,levels=c(0,1),labels=c("Devlet Okulu","Ozel Okul"))
   q$Mean <- -q$Mean
   q$Mean2 <- round(q$Mean,2)
   q
##            tur Freq        Mean s.e.   SD  s.e                      tip
## 1 Devlet Okulu 5017  0.12000000 0.02 0.90 0.01                  Türkiye
## 2    Ozel Okul  222  0.24000000 0.15 1.05 0.06                  Türkiye
## 3 Devlet Okulu 5017  0.02676471 0.00 0.90 0.01 OECD Ülkeleri Ortalamasi
## 4    Ozel Okul  222 -0.09235294 0.00 1.05 0.06 OECD Ülkeleri Ortalamasi
## 5 Devlet Okulu 5017  0.07692308 0.00 0.90 0.01   AB Ülkeleri Ortalamasi
## 6    Ozel Okul  222 -0.01923077 0.00 1.05 0.06   AB Ülkeleri Ortalamasi
##   Mean2
## 1  0.12
## 2  0.24
## 3  0.03
## 4 -0.09
## 5  0.08
## 6 -0.02
 plot <- ggplot(q, aes(x=tip, y=Mean,fill=tur)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,0,0,0,0))+
         scale_y_continuous(limit = c(-.3,.8))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(1),
                  vjust = c(1.2,1.2,1.8,1.2,-.3,-.3),
                  hjust = c(.6,.6,.6,.6,1.5,1.2),
                  size = 6)+
        labs(title ="Fen Derslerindeki Disiplin Ortami", 
              x = "", y = "Standard Puan",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = .8, ymax = .8)

  plot

## png 
##   2

Okul Turu

  tur <- pisa2015.mean(variable="DISCLISCI",data=pisa_2015_stu_TUR,by="PROGN")
    tur$PROGN <- as.character(tur$PROGN)
    tur$PROGN<- factor(tur$PROGN,
                            levels=c("Turkey: Basic Education","Turkey: Vocational and Technical Secondary Education",
                                     "Turkey: General Secondary Education"),
                            labels=c("Ortaogretim","Mesleki ve Teknik Lise","Genel Lise"))
 
  tur
##                    PROGN Freq  Mean s.e.   SD  s.e
## 1            Ortaogretim   75 -0.15 0.16 0.82 0.07
## 2             Genel Lise 2973 -0.06 0.03 0.90 0.02
## 3 Mesleki ve Teknik Lise 2216 -0.22 0.03 0.93 0.02
  tur$Mean <- -tur$Mean


  plot <- ggplot(tur, aes(x=PROGN, y=Mean)) +
         geom_bar(stat='identity',position=position_dodge(),width=.7,fill="bisque2") + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(.2),
                       lty=2,
                       colour="gray50",
                       width=0.05)+
        theme_bw()+
        geom_text(aes(y=Mean,label=Mean), 
                  stat= "identity", position=position_dodge(.2),
                  hjust=1.2,vjust = -.6,size = 5) +
     labs(title = "Okul Turune Gore Fen Derslerindeki Disiplin Ortami Puani", 
          x = "", y = "Standard Puan",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =3.3, xmax = 3.3, ymin = -0.15, ymax = -0.15)

  plot

## png 
##   2