Exercise 1

Install and load the package dplyr package.

Given the metadata:

Wt: weight of the subject (kg).

Dose: dose of theophylline administered orally to the subject (mg/kg).

Time: time since drug administration when the sample was drawn (hr).

conc: theophylline concentration in the sample (mg/L).

Copy and paste this code to get df

install.packages("dplyr", repos="http://cran.rstudio.com/")
## package 'dplyr' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\Baoco\AppData\Local\Temp\RtmpUfDrpr\downloaded_packages
df=data.frame(Theoph)
library(dplyr, lib.loc="C:/Program Files/R/R-3.3.2/library")

Exercise 2

Use the names() function to get the column names of df.

names(df)
## [1] "Subject" "Wt"      "Dose"    "Time"    "conc"

Exercise 3

Let’s practice using the select() function. This allows you to work with just column names instead of indices. a) Select only the columns starting from Subject to Dose b) Only select the Wt and Dose columns now.

select(df, Subject:Dose)
##     Subject   Wt Dose
## 1         1 79.6 4.02
## 2         1 79.6 4.02
## 3         1 79.6 4.02
## 4         1 79.6 4.02
## 5         1 79.6 4.02
## 6         1 79.6 4.02
## 7         1 79.6 4.02
## 8         1 79.6 4.02
## 9         1 79.6 4.02
## 10        1 79.6 4.02
## 11        1 79.6 4.02
## 12        2 72.4 4.40
## 13        2 72.4 4.40
## 14        2 72.4 4.40
## 15        2 72.4 4.40
## 16        2 72.4 4.40
## 17        2 72.4 4.40
## 18        2 72.4 4.40
## 19        2 72.4 4.40
## 20        2 72.4 4.40
## 21        2 72.4 4.40
## 22        2 72.4 4.40
## 23        3 70.5 4.53
## 24        3 70.5 4.53
## 25        3 70.5 4.53
## 26        3 70.5 4.53
## 27        3 70.5 4.53
## 28        3 70.5 4.53
## 29        3 70.5 4.53
## 30        3 70.5 4.53
## 31        3 70.5 4.53
## 32        3 70.5 4.53
## 33        3 70.5 4.53
## 34        4 72.7 4.40
## 35        4 72.7 4.40
## 36        4 72.7 4.40
## 37        4 72.7 4.40
## 38        4 72.7 4.40
## 39        4 72.7 4.40
## 40        4 72.7 4.40
## 41        4 72.7 4.40
## 42        4 72.7 4.40
## 43        4 72.7 4.40
## 44        4 72.7 4.40
## 45        5 54.6 5.86
## 46        5 54.6 5.86
## 47        5 54.6 5.86
## 48        5 54.6 5.86
## 49        5 54.6 5.86
## 50        5 54.6 5.86
## 51        5 54.6 5.86
## 52        5 54.6 5.86
## 53        5 54.6 5.86
## 54        5 54.6 5.86
## 55        5 54.6 5.86
## 56        6 80.0 4.00
## 57        6 80.0 4.00
## 58        6 80.0 4.00
## 59        6 80.0 4.00
## 60        6 80.0 4.00
## 61        6 80.0 4.00
## 62        6 80.0 4.00
## 63        6 80.0 4.00
## 64        6 80.0 4.00
## 65        6 80.0 4.00
## 66        6 80.0 4.00
## 67        7 64.6 4.95
## 68        7 64.6 4.95
## 69        7 64.6 4.95
## 70        7 64.6 4.95
## 71        7 64.6 4.95
## 72        7 64.6 4.95
## 73        7 64.6 4.95
## 74        7 64.6 4.95
## 75        7 64.6 4.95
## 76        7 64.6 4.95
## 77        7 64.6 4.95
## 78        8 70.5 4.53
## 79        8 70.5 4.53
## 80        8 70.5 4.53
## 81        8 70.5 4.53
## 82        8 70.5 4.53
## 83        8 70.5 4.53
## 84        8 70.5 4.53
## 85        8 70.5 4.53
## 86        8 70.5 4.53
## 87        8 70.5 4.53
## 88        8 70.5 4.53
## 89        9 86.4 3.10
## 90        9 86.4 3.10
## 91        9 86.4 3.10
## 92        9 86.4 3.10
## 93        9 86.4 3.10
## 94        9 86.4 3.10
## 95        9 86.4 3.10
## 96        9 86.4 3.10
## 97        9 86.4 3.10
## 98        9 86.4 3.10
## 99        9 86.4 3.10
## 100      10 58.2 5.50
## 101      10 58.2 5.50
## 102      10 58.2 5.50
## 103      10 58.2 5.50
## 104      10 58.2 5.50
## 105      10 58.2 5.50
## 106      10 58.2 5.50
## 107      10 58.2 5.50
## 108      10 58.2 5.50
## 109      10 58.2 5.50
## 110      10 58.2 5.50
## 111      11 65.0 4.92
## 112      11 65.0 4.92
## 113      11 65.0 4.92
## 114      11 65.0 4.92
## 115      11 65.0 4.92
## 116      11 65.0 4.92
## 117      11 65.0 4.92
## 118      11 65.0 4.92
## 119      11 65.0 4.92
## 120      11 65.0 4.92
## 121      11 65.0 4.92
## 122      12 60.5 5.30
## 123      12 60.5 5.30
## 124      12 60.5 5.30
## 125      12 60.5 5.30
## 126      12 60.5 5.30
## 127      12 60.5 5.30
## 128      12 60.5 5.30
## 129      12 60.5 5.30
## 130      12 60.5 5.30
## 131      12 60.5 5.30
## 132      12 60.5 5.30

Exercise 4

Let’s look at the sample with Dose greater than 5 mg/kg. Use the filter command() to return df with Dose>5’

filter(df, Dose > 5)
##    Subject   Wt Dose  Time  conc
## 1        5 54.6 5.86  0.00  0.00
## 2        5 54.6 5.86  0.30  2.02
## 3        5 54.6 5.86  0.52  5.63
## 4        5 54.6 5.86  1.00 11.40
## 5        5 54.6 5.86  2.02  9.33
## 6        5 54.6 5.86  3.50  8.74
## 7        5 54.6 5.86  5.02  7.56
## 8        5 54.6 5.86  7.02  7.09
## 9        5 54.6 5.86  9.10  5.90
## 10       5 54.6 5.86 12.00  4.37
## 11       5 54.6 5.86 24.35  1.57
## 12      10 58.2 5.50  0.00  0.24
## 13      10 58.2 5.50  0.37  2.89
## 14      10 58.2 5.50  0.77  5.22
## 15      10 58.2 5.50  1.02  6.41
## 16      10 58.2 5.50  2.05  7.83
## 17      10 58.2 5.50  3.55 10.21
## 18      10 58.2 5.50  5.05  9.18
## 19      10 58.2 5.50  7.08  8.02
## 20      10 58.2 5.50  9.38  7.14
## 21      10 58.2 5.50 12.10  5.68
## 22      10 58.2 5.50 23.70  2.42
## 23      12 60.5 5.30  0.00  0.00
## 24      12 60.5 5.30  0.25  1.25
## 25      12 60.5 5.30  0.50  3.96
## 26      12 60.5 5.30  1.00  7.82
## 27      12 60.5 5.30  2.00  9.72
## 28      12 60.5 5.30  3.52  9.75
## 29      12 60.5 5.30  5.07  8.57
## 30      12 60.5 5.30  7.07  6.59
## 31      12 60.5 5.30  9.03  6.11
## 32      12 60.5 5.30 12.05  4.57
## 33      12 60.5 5.30 24.15  1.17

Exercise 5

Great. Now use filter command to return df with Dose>5 and Time greater than the mean Time.

filter(df, Dose > 5, Time > mean(Time))
##    Subject   Wt Dose  Time conc
## 1        5 54.6 5.86  7.02 7.09
## 2        5 54.6 5.86  9.10 5.90
## 3        5 54.6 5.86 12.00 4.37
## 4        5 54.6 5.86 24.35 1.57
## 5       10 58.2 5.50  7.08 8.02
## 6       10 58.2 5.50  9.38 7.14
## 7       10 58.2 5.50 12.10 5.68
## 8       10 58.2 5.50 23.70 2.42
## 9       12 60.5 5.30  7.07 6.59
## 10      12 60.5 5.30  9.03 6.11
## 11      12 60.5 5.30 12.05 4.57
## 12      12 60.5 5.30 24.15 1.17

Exercise 6

Now let’s try sorting the data. Use the arrange() function to 1) arrange df by weight (descending)

arrange(df, desc(Wt))
##     Subject   Wt Dose  Time  conc
## 1         9 86.4 3.10  0.00  0.00
## 2         9 86.4 3.10  0.30  7.37
## 3         9 86.4 3.10  0.63  9.03
## 4         9 86.4 3.10  1.05  7.14
## 5         9 86.4 3.10  2.02  6.33
## 6         9 86.4 3.10  3.53  5.66
## 7         9 86.4 3.10  5.02  5.67
## 8         9 86.4 3.10  7.17  4.24
## 9         9 86.4 3.10  8.80  4.11
## 10        9 86.4 3.10 11.60  3.16
## 11        9 86.4 3.10 24.43  1.12
## 12        6 80.0 4.00  0.00  0.00
## 13        6 80.0 4.00  0.27  1.29
## 14        6 80.0 4.00  0.58  3.08
## 15        6 80.0 4.00  1.15  6.44
## 16        6 80.0 4.00  2.03  6.32
## 17        6 80.0 4.00  3.57  5.53
## 18        6 80.0 4.00  5.00  4.94
## 19        6 80.0 4.00  7.00  4.02
## 20        6 80.0 4.00  9.22  3.46
## 21        6 80.0 4.00 12.10  2.78
## 22        6 80.0 4.00 23.85  0.92
## 23        1 79.6 4.02  0.00  0.74
## 24        1 79.6 4.02  0.25  2.84
## 25        1 79.6 4.02  0.57  6.57
## 26        1 79.6 4.02  1.12 10.50
## 27        1 79.6 4.02  2.02  9.66
## 28        1 79.6 4.02  3.82  8.58
## 29        1 79.6 4.02  5.10  8.36
## 30        1 79.6 4.02  7.03  7.47
## 31        1 79.6 4.02  9.05  6.89
## 32        1 79.6 4.02 12.12  5.94
## 33        1 79.6 4.02 24.37  3.28
## 34        4 72.7 4.40  0.00  0.00
## 35        4 72.7 4.40  0.35  1.89
## 36        4 72.7 4.40  0.60  4.60
## 37        4 72.7 4.40  1.07  8.60
## 38        4 72.7 4.40  2.13  8.38
## 39        4 72.7 4.40  3.50  7.54
## 40        4 72.7 4.40  5.02  6.88
## 41        4 72.7 4.40  7.02  5.78
## 42        4 72.7 4.40  9.02  5.33
## 43        4 72.7 4.40 11.98  4.19
## 44        4 72.7 4.40 24.65  1.15
## 45        2 72.4 4.40  0.00  0.00
## 46        2 72.4 4.40  0.27  1.72
## 47        2 72.4 4.40  0.52  7.91
## 48        2 72.4 4.40  1.00  8.31
## 49        2 72.4 4.40  1.92  8.33
## 50        2 72.4 4.40  3.50  6.85
## 51        2 72.4 4.40  5.02  6.08
## 52        2 72.4 4.40  7.03  5.40
## 53        2 72.4 4.40  9.00  4.55
## 54        2 72.4 4.40 12.00  3.01
## 55        2 72.4 4.40 24.30  0.90
## 56        3 70.5 4.53  0.00  0.00
## 57        3 70.5 4.53  0.27  4.40
## 58        3 70.5 4.53  0.58  6.90
## 59        3 70.5 4.53  1.02  8.20
## 60        3 70.5 4.53  2.02  7.80
## 61        3 70.5 4.53  3.62  7.50
## 62        3 70.5 4.53  5.08  6.20
## 63        3 70.5 4.53  7.07  5.30
## 64        3 70.5 4.53  9.00  4.90
## 65        3 70.5 4.53 12.15  3.70
## 66        3 70.5 4.53 24.17  1.05
## 67        8 70.5 4.53  0.00  0.00
## 68        8 70.5 4.53  0.25  3.05
## 69        8 70.5 4.53  0.52  3.05
## 70        8 70.5 4.53  0.98  7.31
## 71        8 70.5 4.53  2.02  7.56
## 72        8 70.5 4.53  3.53  6.59
## 73        8 70.5 4.53  5.05  5.88
## 74        8 70.5 4.53  7.15  4.73
## 75        8 70.5 4.53  9.07  4.57
## 76        8 70.5 4.53 12.10  3.00
## 77        8 70.5 4.53 24.12  1.25
## 78       11 65.0 4.92  0.00  0.00
## 79       11 65.0 4.92  0.25  4.86
## 80       11 65.0 4.92  0.50  7.24
## 81       11 65.0 4.92  0.98  8.00
## 82       11 65.0 4.92  1.98  6.81
## 83       11 65.0 4.92  3.60  5.87
## 84       11 65.0 4.92  5.02  5.22
## 85       11 65.0 4.92  7.03  4.45
## 86       11 65.0 4.92  9.03  3.62
## 87       11 65.0 4.92 12.12  2.69
## 88       11 65.0 4.92 24.08  0.86
## 89        7 64.6 4.95  0.00  0.15
## 90        7 64.6 4.95  0.25  0.85
## 91        7 64.6 4.95  0.50  2.35
## 92        7 64.6 4.95  1.02  5.02
## 93        7 64.6 4.95  2.02  6.58
## 94        7 64.6 4.95  3.48  7.09
## 95        7 64.6 4.95  5.00  6.66
## 96        7 64.6 4.95  6.98  5.25
## 97        7 64.6 4.95  9.00  4.39
## 98        7 64.6 4.95 12.05  3.53
## 99        7 64.6 4.95 24.22  1.15
## 100      12 60.5 5.30  0.00  0.00
## 101      12 60.5 5.30  0.25  1.25
## 102      12 60.5 5.30  0.50  3.96
## 103      12 60.5 5.30  1.00  7.82
## 104      12 60.5 5.30  2.00  9.72
## 105      12 60.5 5.30  3.52  9.75
## 106      12 60.5 5.30  5.07  8.57
## 107      12 60.5 5.30  7.07  6.59
## 108      12 60.5 5.30  9.03  6.11
## 109      12 60.5 5.30 12.05  4.57
## 110      12 60.5 5.30 24.15  1.17
## 111      10 58.2 5.50  0.00  0.24
## 112      10 58.2 5.50  0.37  2.89
## 113      10 58.2 5.50  0.77  5.22
## 114      10 58.2 5.50  1.02  6.41
## 115      10 58.2 5.50  2.05  7.83
## 116      10 58.2 5.50  3.55 10.21
## 117      10 58.2 5.50  5.05  9.18
## 118      10 58.2 5.50  7.08  8.02
## 119      10 58.2 5.50  9.38  7.14
## 120      10 58.2 5.50 12.10  5.68
## 121      10 58.2 5.50 23.70  2.42
## 122       5 54.6 5.86  0.00  0.00
## 123       5 54.6 5.86  0.30  2.02
## 124       5 54.6 5.86  0.52  5.63
## 125       5 54.6 5.86  1.00 11.40
## 126       5 54.6 5.86  2.02  9.33
## 127       5 54.6 5.86  3.50  8.74
## 128       5 54.6 5.86  5.02  7.56
## 129       5 54.6 5.86  7.02  7.09
## 130       5 54.6 5.86  9.10  5.90
## 131       5 54.6 5.86 12.00  4.37
## 132       5 54.6 5.86 24.35  1.57
  1. arrange df by weight (ascending)
arrange(df, Wt)
##     Subject   Wt Dose  Time  conc
## 1         5 54.6 5.86  0.00  0.00
## 2         5 54.6 5.86  0.30  2.02
## 3         5 54.6 5.86  0.52  5.63
## 4         5 54.6 5.86  1.00 11.40
## 5         5 54.6 5.86  2.02  9.33
## 6         5 54.6 5.86  3.50  8.74
## 7         5 54.6 5.86  5.02  7.56
## 8         5 54.6 5.86  7.02  7.09
## 9         5 54.6 5.86  9.10  5.90
## 10        5 54.6 5.86 12.00  4.37
## 11        5 54.6 5.86 24.35  1.57
## 12       10 58.2 5.50  0.00  0.24
## 13       10 58.2 5.50  0.37  2.89
## 14       10 58.2 5.50  0.77  5.22
## 15       10 58.2 5.50  1.02  6.41
## 16       10 58.2 5.50  2.05  7.83
## 17       10 58.2 5.50  3.55 10.21
## 18       10 58.2 5.50  5.05  9.18
## 19       10 58.2 5.50  7.08  8.02
## 20       10 58.2 5.50  9.38  7.14
## 21       10 58.2 5.50 12.10  5.68
## 22       10 58.2 5.50 23.70  2.42
## 23       12 60.5 5.30  0.00  0.00
## 24       12 60.5 5.30  0.25  1.25
## 25       12 60.5 5.30  0.50  3.96
## 26       12 60.5 5.30  1.00  7.82
## 27       12 60.5 5.30  2.00  9.72
## 28       12 60.5 5.30  3.52  9.75
## 29       12 60.5 5.30  5.07  8.57
## 30       12 60.5 5.30  7.07  6.59
## 31       12 60.5 5.30  9.03  6.11
## 32       12 60.5 5.30 12.05  4.57
## 33       12 60.5 5.30 24.15  1.17
## 34        7 64.6 4.95  0.00  0.15
## 35        7 64.6 4.95  0.25  0.85
## 36        7 64.6 4.95  0.50  2.35
## 37        7 64.6 4.95  1.02  5.02
## 38        7 64.6 4.95  2.02  6.58
## 39        7 64.6 4.95  3.48  7.09
## 40        7 64.6 4.95  5.00  6.66
## 41        7 64.6 4.95  6.98  5.25
## 42        7 64.6 4.95  9.00  4.39
## 43        7 64.6 4.95 12.05  3.53
## 44        7 64.6 4.95 24.22  1.15
## 45       11 65.0 4.92  0.00  0.00
## 46       11 65.0 4.92  0.25  4.86
## 47       11 65.0 4.92  0.50  7.24
## 48       11 65.0 4.92  0.98  8.00
## 49       11 65.0 4.92  1.98  6.81
## 50       11 65.0 4.92  3.60  5.87
## 51       11 65.0 4.92  5.02  5.22
## 52       11 65.0 4.92  7.03  4.45
## 53       11 65.0 4.92  9.03  3.62
## 54       11 65.0 4.92 12.12  2.69
## 55       11 65.0 4.92 24.08  0.86
## 56        3 70.5 4.53  0.00  0.00
## 57        3 70.5 4.53  0.27  4.40
## 58        3 70.5 4.53  0.58  6.90
## 59        3 70.5 4.53  1.02  8.20
## 60        3 70.5 4.53  2.02  7.80
## 61        3 70.5 4.53  3.62  7.50
## 62        3 70.5 4.53  5.08  6.20
## 63        3 70.5 4.53  7.07  5.30
## 64        3 70.5 4.53  9.00  4.90
## 65        3 70.5 4.53 12.15  3.70
## 66        3 70.5 4.53 24.17  1.05
## 67        8 70.5 4.53  0.00  0.00
## 68        8 70.5 4.53  0.25  3.05
## 69        8 70.5 4.53  0.52  3.05
## 70        8 70.5 4.53  0.98  7.31
## 71        8 70.5 4.53  2.02  7.56
## 72        8 70.5 4.53  3.53  6.59
## 73        8 70.5 4.53  5.05  5.88
## 74        8 70.5 4.53  7.15  4.73
## 75        8 70.5 4.53  9.07  4.57
## 76        8 70.5 4.53 12.10  3.00
## 77        8 70.5 4.53 24.12  1.25
## 78        2 72.4 4.40  0.00  0.00
## 79        2 72.4 4.40  0.27  1.72
## 80        2 72.4 4.40  0.52  7.91
## 81        2 72.4 4.40  1.00  8.31
## 82        2 72.4 4.40  1.92  8.33
## 83        2 72.4 4.40  3.50  6.85
## 84        2 72.4 4.40  5.02  6.08
## 85        2 72.4 4.40  7.03  5.40
## 86        2 72.4 4.40  9.00  4.55
## 87        2 72.4 4.40 12.00  3.01
## 88        2 72.4 4.40 24.30  0.90
## 89        4 72.7 4.40  0.00  0.00
## 90        4 72.7 4.40  0.35  1.89
## 91        4 72.7 4.40  0.60  4.60
## 92        4 72.7 4.40  1.07  8.60
## 93        4 72.7 4.40  2.13  8.38
## 94        4 72.7 4.40  3.50  7.54
## 95        4 72.7 4.40  5.02  6.88
## 96        4 72.7 4.40  7.02  5.78
## 97        4 72.7 4.40  9.02  5.33
## 98        4 72.7 4.40 11.98  4.19
## 99        4 72.7 4.40 24.65  1.15
## 100       1 79.6 4.02  0.00  0.74
## 101       1 79.6 4.02  0.25  2.84
## 102       1 79.6 4.02  0.57  6.57
## 103       1 79.6 4.02  1.12 10.50
## 104       1 79.6 4.02  2.02  9.66
## 105       1 79.6 4.02  3.82  8.58
## 106       1 79.6 4.02  5.10  8.36
## 107       1 79.6 4.02  7.03  7.47
## 108       1 79.6 4.02  9.05  6.89
## 109       1 79.6 4.02 12.12  5.94
## 110       1 79.6 4.02 24.37  3.28
## 111       6 80.0 4.00  0.00  0.00
## 112       6 80.0 4.00  0.27  1.29
## 113       6 80.0 4.00  0.58  3.08
## 114       6 80.0 4.00  1.15  6.44
## 115       6 80.0 4.00  2.03  6.32
## 116       6 80.0 4.00  3.57  5.53
## 117       6 80.0 4.00  5.00  4.94
## 118       6 80.0 4.00  7.00  4.02
## 119       6 80.0 4.00  9.22  3.46
## 120       6 80.0 4.00 12.10  2.78
## 121       6 80.0 4.00 23.85  0.92
## 122       9 86.4 3.10  0.00  0.00
## 123       9 86.4 3.10  0.30  7.37
## 124       9 86.4 3.10  0.63  9.03
## 125       9 86.4 3.10  1.05  7.14
## 126       9 86.4 3.10  2.02  6.33
## 127       9 86.4 3.10  3.53  5.66
## 128       9 86.4 3.10  5.02  5.67
## 129       9 86.4 3.10  7.17  4.24
## 130       9 86.4 3.10  8.80  4.11
## 131       9 86.4 3.10 11.60  3.16
## 132       9 86.4 3.10 24.43  1.12
  1. arrange df by weight (ascending) and Time (descending)
arrange(df, Wt, desc(Time))
##     Subject   Wt Dose  Time  conc
## 1         5 54.6 5.86 24.35  1.57
## 2         5 54.6 5.86 12.00  4.37
## 3         5 54.6 5.86  9.10  5.90
## 4         5 54.6 5.86  7.02  7.09
## 5         5 54.6 5.86  5.02  7.56
## 6         5 54.6 5.86  3.50  8.74
## 7         5 54.6 5.86  2.02  9.33
## 8         5 54.6 5.86  1.00 11.40
## 9         5 54.6 5.86  0.52  5.63
## 10        5 54.6 5.86  0.30  2.02
## 11        5 54.6 5.86  0.00  0.00
## 12       10 58.2 5.50 23.70  2.42
## 13       10 58.2 5.50 12.10  5.68
## 14       10 58.2 5.50  9.38  7.14
## 15       10 58.2 5.50  7.08  8.02
## 16       10 58.2 5.50  5.05  9.18
## 17       10 58.2 5.50  3.55 10.21
## 18       10 58.2 5.50  2.05  7.83
## 19       10 58.2 5.50  1.02  6.41
## 20       10 58.2 5.50  0.77  5.22
## 21       10 58.2 5.50  0.37  2.89
## 22       10 58.2 5.50  0.00  0.24
## 23       12 60.5 5.30 24.15  1.17
## 24       12 60.5 5.30 12.05  4.57
## 25       12 60.5 5.30  9.03  6.11
## 26       12 60.5 5.30  7.07  6.59
## 27       12 60.5 5.30  5.07  8.57
## 28       12 60.5 5.30  3.52  9.75
## 29       12 60.5 5.30  2.00  9.72
## 30       12 60.5 5.30  1.00  7.82
## 31       12 60.5 5.30  0.50  3.96
## 32       12 60.5 5.30  0.25  1.25
## 33       12 60.5 5.30  0.00  0.00
## 34        7 64.6 4.95 24.22  1.15
## 35        7 64.6 4.95 12.05  3.53
## 36        7 64.6 4.95  9.00  4.39
## 37        7 64.6 4.95  6.98  5.25
## 38        7 64.6 4.95  5.00  6.66
## 39        7 64.6 4.95  3.48  7.09
## 40        7 64.6 4.95  2.02  6.58
## 41        7 64.6 4.95  1.02  5.02
## 42        7 64.6 4.95  0.50  2.35
## 43        7 64.6 4.95  0.25  0.85
## 44        7 64.6 4.95  0.00  0.15
## 45       11 65.0 4.92 24.08  0.86
## 46       11 65.0 4.92 12.12  2.69
## 47       11 65.0 4.92  9.03  3.62
## 48       11 65.0 4.92  7.03  4.45
## 49       11 65.0 4.92  5.02  5.22
## 50       11 65.0 4.92  3.60  5.87
## 51       11 65.0 4.92  1.98  6.81
## 52       11 65.0 4.92  0.98  8.00
## 53       11 65.0 4.92  0.50  7.24
## 54       11 65.0 4.92  0.25  4.86
## 55       11 65.0 4.92  0.00  0.00
## 56        3 70.5 4.53 24.17  1.05
## 57        8 70.5 4.53 24.12  1.25
## 58        3 70.5 4.53 12.15  3.70
## 59        8 70.5 4.53 12.10  3.00
## 60        8 70.5 4.53  9.07  4.57
## 61        3 70.5 4.53  9.00  4.90
## 62        8 70.5 4.53  7.15  4.73
## 63        3 70.5 4.53  7.07  5.30
## 64        3 70.5 4.53  5.08  6.20
## 65        8 70.5 4.53  5.05  5.88
## 66        3 70.5 4.53  3.62  7.50
## 67        8 70.5 4.53  3.53  6.59
## 68        3 70.5 4.53  2.02  7.80
## 69        8 70.5 4.53  2.02  7.56
## 70        3 70.5 4.53  1.02  8.20
## 71        8 70.5 4.53  0.98  7.31
## 72        3 70.5 4.53  0.58  6.90
## 73        8 70.5 4.53  0.52  3.05
## 74        3 70.5 4.53  0.27  4.40
## 75        8 70.5 4.53  0.25  3.05
## 76        3 70.5 4.53  0.00  0.00
## 77        8 70.5 4.53  0.00  0.00
## 78        2 72.4 4.40 24.30  0.90
## 79        2 72.4 4.40 12.00  3.01
## 80        2 72.4 4.40  9.00  4.55
## 81        2 72.4 4.40  7.03  5.40
## 82        2 72.4 4.40  5.02  6.08
## 83        2 72.4 4.40  3.50  6.85
## 84        2 72.4 4.40  1.92  8.33
## 85        2 72.4 4.40  1.00  8.31
## 86        2 72.4 4.40  0.52  7.91
## 87        2 72.4 4.40  0.27  1.72
## 88        2 72.4 4.40  0.00  0.00
## 89        4 72.7 4.40 24.65  1.15
## 90        4 72.7 4.40 11.98  4.19
## 91        4 72.7 4.40  9.02  5.33
## 92        4 72.7 4.40  7.02  5.78
## 93        4 72.7 4.40  5.02  6.88
## 94        4 72.7 4.40  3.50  7.54
## 95        4 72.7 4.40  2.13  8.38
## 96        4 72.7 4.40  1.07  8.60
## 97        4 72.7 4.40  0.60  4.60
## 98        4 72.7 4.40  0.35  1.89
## 99        4 72.7 4.40  0.00  0.00
## 100       1 79.6 4.02 24.37  3.28
## 101       1 79.6 4.02 12.12  5.94
## 102       1 79.6 4.02  9.05  6.89
## 103       1 79.6 4.02  7.03  7.47
## 104       1 79.6 4.02  5.10  8.36
## 105       1 79.6 4.02  3.82  8.58
## 106       1 79.6 4.02  2.02  9.66
## 107       1 79.6 4.02  1.12 10.50
## 108       1 79.6 4.02  0.57  6.57
## 109       1 79.6 4.02  0.25  2.84
## 110       1 79.6 4.02  0.00  0.74
## 111       6 80.0 4.00 23.85  0.92
## 112       6 80.0 4.00 12.10  2.78
## 113       6 80.0 4.00  9.22  3.46
## 114       6 80.0 4.00  7.00  4.02
## 115       6 80.0 4.00  5.00  4.94
## 116       6 80.0 4.00  3.57  5.53
## 117       6 80.0 4.00  2.03  6.32
## 118       6 80.0 4.00  1.15  6.44
## 119       6 80.0 4.00  0.58  3.08
## 120       6 80.0 4.00  0.27  1.29
## 121       6 80.0 4.00  0.00  0.00
## 122       9 86.4 3.10 24.43  1.12
## 123       9 86.4 3.10 11.60  3.16
## 124       9 86.4 3.10  8.80  4.11
## 125       9 86.4 3.10  7.17  4.24
## 126       9 86.4 3.10  5.02  5.67
## 127       9 86.4 3.10  3.53  5.66
## 128       9 86.4 3.10  2.02  6.33
## 129       9 86.4 3.10  1.05  7.14
## 130       9 86.4 3.10  0.63  9.03
## 131       9 86.4 3.10  0.30  7.37
## 132       9 86.4 3.10  0.00  0.00

Exercise 7

The mutate() command allows you to create a new column using conditions and data derived from other columns. Use mutate() command to create a new column called trend that equals to Time-mean(Time). This will tell you how far each time value is from its mean. Set na.rm=TRUE.

mutate(df, trend=Time-mean(Time, na.rm=TRUE))
##     Subject   Wt Dose  Time  conc      trend
## 1         1 79.6 4.02  0.00  0.74 -5.8946212
## 2         1 79.6 4.02  0.25  2.84 -5.6446212
## 3         1 79.6 4.02  0.57  6.57 -5.3246212
## 4         1 79.6 4.02  1.12 10.50 -4.7746212
## 5         1 79.6 4.02  2.02  9.66 -3.8746212
## 6         1 79.6 4.02  3.82  8.58 -2.0746212
## 7         1 79.6 4.02  5.10  8.36 -0.7946212
## 8         1 79.6 4.02  7.03  7.47  1.1353788
## 9         1 79.6 4.02  9.05  6.89  3.1553788
## 10        1 79.6 4.02 12.12  5.94  6.2253788
## 11        1 79.6 4.02 24.37  3.28 18.4753788
## 12        2 72.4 4.40  0.00  0.00 -5.8946212
## 13        2 72.4 4.40  0.27  1.72 -5.6246212
## 14        2 72.4 4.40  0.52  7.91 -5.3746212
## 15        2 72.4 4.40  1.00  8.31 -4.8946212
## 16        2 72.4 4.40  1.92  8.33 -3.9746212
## 17        2 72.4 4.40  3.50  6.85 -2.3946212
## 18        2 72.4 4.40  5.02  6.08 -0.8746212
## 19        2 72.4 4.40  7.03  5.40  1.1353788
## 20        2 72.4 4.40  9.00  4.55  3.1053788
## 21        2 72.4 4.40 12.00  3.01  6.1053788
## 22        2 72.4 4.40 24.30  0.90 18.4053788
## 23        3 70.5 4.53  0.00  0.00 -5.8946212
## 24        3 70.5 4.53  0.27  4.40 -5.6246212
## 25        3 70.5 4.53  0.58  6.90 -5.3146212
## 26        3 70.5 4.53  1.02  8.20 -4.8746212
## 27        3 70.5 4.53  2.02  7.80 -3.8746212
## 28        3 70.5 4.53  3.62  7.50 -2.2746212
## 29        3 70.5 4.53  5.08  6.20 -0.8146212
## 30        3 70.5 4.53  7.07  5.30  1.1753788
## 31        3 70.5 4.53  9.00  4.90  3.1053788
## 32        3 70.5 4.53 12.15  3.70  6.2553788
## 33        3 70.5 4.53 24.17  1.05 18.2753788
## 34        4 72.7 4.40  0.00  0.00 -5.8946212
## 35        4 72.7 4.40  0.35  1.89 -5.5446212
## 36        4 72.7 4.40  0.60  4.60 -5.2946212
## 37        4 72.7 4.40  1.07  8.60 -4.8246212
## 38        4 72.7 4.40  2.13  8.38 -3.7646212
## 39        4 72.7 4.40  3.50  7.54 -2.3946212
## 40        4 72.7 4.40  5.02  6.88 -0.8746212
## 41        4 72.7 4.40  7.02  5.78  1.1253788
## 42        4 72.7 4.40  9.02  5.33  3.1253788
## 43        4 72.7 4.40 11.98  4.19  6.0853788
## 44        4 72.7 4.40 24.65  1.15 18.7553788
## 45        5 54.6 5.86  0.00  0.00 -5.8946212
## 46        5 54.6 5.86  0.30  2.02 -5.5946212
## 47        5 54.6 5.86  0.52  5.63 -5.3746212
## 48        5 54.6 5.86  1.00 11.40 -4.8946212
## 49        5 54.6 5.86  2.02  9.33 -3.8746212
## 50        5 54.6 5.86  3.50  8.74 -2.3946212
## 51        5 54.6 5.86  5.02  7.56 -0.8746212
## 52        5 54.6 5.86  7.02  7.09  1.1253788
## 53        5 54.6 5.86  9.10  5.90  3.2053788
## 54        5 54.6 5.86 12.00  4.37  6.1053788
## 55        5 54.6 5.86 24.35  1.57 18.4553788
## 56        6 80.0 4.00  0.00  0.00 -5.8946212
## 57        6 80.0 4.00  0.27  1.29 -5.6246212
## 58        6 80.0 4.00  0.58  3.08 -5.3146212
## 59        6 80.0 4.00  1.15  6.44 -4.7446212
## 60        6 80.0 4.00  2.03  6.32 -3.8646212
## 61        6 80.0 4.00  3.57  5.53 -2.3246212
## 62        6 80.0 4.00  5.00  4.94 -0.8946212
## 63        6 80.0 4.00  7.00  4.02  1.1053788
## 64        6 80.0 4.00  9.22  3.46  3.3253788
## 65        6 80.0 4.00 12.10  2.78  6.2053788
## 66        6 80.0 4.00 23.85  0.92 17.9553788
## 67        7 64.6 4.95  0.00  0.15 -5.8946212
## 68        7 64.6 4.95  0.25  0.85 -5.6446212
## 69        7 64.6 4.95  0.50  2.35 -5.3946212
## 70        7 64.6 4.95  1.02  5.02 -4.8746212
## 71        7 64.6 4.95  2.02  6.58 -3.8746212
## 72        7 64.6 4.95  3.48  7.09 -2.4146212
## 73        7 64.6 4.95  5.00  6.66 -0.8946212
## 74        7 64.6 4.95  6.98  5.25  1.0853788
## 75        7 64.6 4.95  9.00  4.39  3.1053788
## 76        7 64.6 4.95 12.05  3.53  6.1553788
## 77        7 64.6 4.95 24.22  1.15 18.3253788
## 78        8 70.5 4.53  0.00  0.00 -5.8946212
## 79        8 70.5 4.53  0.25  3.05 -5.6446212
## 80        8 70.5 4.53  0.52  3.05 -5.3746212
## 81        8 70.5 4.53  0.98  7.31 -4.9146212
## 82        8 70.5 4.53  2.02  7.56 -3.8746212
## 83        8 70.5 4.53  3.53  6.59 -2.3646212
## 84        8 70.5 4.53  5.05  5.88 -0.8446212
## 85        8 70.5 4.53  7.15  4.73  1.2553788
## 86        8 70.5 4.53  9.07  4.57  3.1753788
## 87        8 70.5 4.53 12.10  3.00  6.2053788
## 88        8 70.5 4.53 24.12  1.25 18.2253788
## 89        9 86.4 3.10  0.00  0.00 -5.8946212
## 90        9 86.4 3.10  0.30  7.37 -5.5946212
## 91        9 86.4 3.10  0.63  9.03 -5.2646212
## 92        9 86.4 3.10  1.05  7.14 -4.8446212
## 93        9 86.4 3.10  2.02  6.33 -3.8746212
## 94        9 86.4 3.10  3.53  5.66 -2.3646212
## 95        9 86.4 3.10  5.02  5.67 -0.8746212
## 96        9 86.4 3.10  7.17  4.24  1.2753788
## 97        9 86.4 3.10  8.80  4.11  2.9053788
## 98        9 86.4 3.10 11.60  3.16  5.7053788
## 99        9 86.4 3.10 24.43  1.12 18.5353788
## 100      10 58.2 5.50  0.00  0.24 -5.8946212
## 101      10 58.2 5.50  0.37  2.89 -5.5246212
## 102      10 58.2 5.50  0.77  5.22 -5.1246212
## 103      10 58.2 5.50  1.02  6.41 -4.8746212
## 104      10 58.2 5.50  2.05  7.83 -3.8446212
## 105      10 58.2 5.50  3.55 10.21 -2.3446212
## 106      10 58.2 5.50  5.05  9.18 -0.8446212
## 107      10 58.2 5.50  7.08  8.02  1.1853788
## 108      10 58.2 5.50  9.38  7.14  3.4853788
## 109      10 58.2 5.50 12.10  5.68  6.2053788
## 110      10 58.2 5.50 23.70  2.42 17.8053788
## 111      11 65.0 4.92  0.00  0.00 -5.8946212
## 112      11 65.0 4.92  0.25  4.86 -5.6446212
## 113      11 65.0 4.92  0.50  7.24 -5.3946212
## 114      11 65.0 4.92  0.98  8.00 -4.9146212
## 115      11 65.0 4.92  1.98  6.81 -3.9146212
## 116      11 65.0 4.92  3.60  5.87 -2.2946212
## 117      11 65.0 4.92  5.02  5.22 -0.8746212
## 118      11 65.0 4.92  7.03  4.45  1.1353788
## 119      11 65.0 4.92  9.03  3.62  3.1353788
## 120      11 65.0 4.92 12.12  2.69  6.2253788
## 121      11 65.0 4.92 24.08  0.86 18.1853788
## 122      12 60.5 5.30  0.00  0.00 -5.8946212
## 123      12 60.5 5.30  0.25  1.25 -5.6446212
## 124      12 60.5 5.30  0.50  3.96 -5.3946212
## 125      12 60.5 5.30  1.00  7.82 -4.8946212
## 126      12 60.5 5.30  2.00  9.72 -3.8946212
## 127      12 60.5 5.30  3.52  9.75 -2.3746212
## 128      12 60.5 5.30  5.07  8.57 -0.8246212
## 129      12 60.5 5.30  7.07  6.59  1.1753788
## 130      12 60.5 5.30  9.03  6.11  3.1353788
## 131      12 60.5 5.30 12.05  4.57  6.1553788
## 132      12 60.5 5.30 24.15  1.17 18.2553788

Exercise 8

Given the meta-data

76.2 kg Super-middleweight 72.57 kg Middleweight 69.85 kg Light-middleweight 66.68 kg Welterweight

Use the mutate function to classify the weight using the information above. For the purpose of this exercise, considering anything above 76.2 kg to be Super-middleweight and anything below 66.8 to be Welterweight. Anything below 76.2 to be middleweight and anything below 72.57 to be light-middleweight. Store the classifications under weight_cat. Hint: Use ifelse function() with mutate() to achieve this. Store this back into df.

df <- mutate(df, weight_cat=ifelse(Wt > 76.2, 'Super-middleweight', ifelse(Wt > 72.57, 'Middleweight', ifelse(Wt > 66.68, 'Light-middleweight', 'Welterweight'))))

Exercise 9

Use the group_by() command to group df by weight_cat. This allows us to use aggregated functions similar to group by in SQL. Store this in a df called weight_group

weight_group <- group_by(df, weight_cat)

Exercise 10

Use the summarize() command on the weight_group created in Question 9 to find the mean Time and sum of Dose received by each weight categories.

summarize(weight_group, mean.Time=mean(Time), sum.Dose=sum(Dose))
## # A tibble: 4 × 3
##           weight_cat mean.Time sum.Dose
##                <chr>     <dbl>    <dbl>
## 1 Light-middleweight  5.888788   148.06
## 2       Middleweight  5.940000    48.40
## 3 Super-middleweight  5.902121   122.32
## 4       Welterweight  5.884545   291.83