Working on the feature 13

load("~/PED/prepareDataDay/feature_new_norm13.RData")
##the variables
colnames(feature_new_train13)
##  [1] "MAXO3P"               "AVGO3P"               "MAXO3P_MAXRHP"       
##  [4] "MAXO3P_MEDIANO2P"     "MEDIANWSPP_MEDIANRHP" "MAXWDRP_MEDIANNOxP"  
##  [7] "MAXTMPP_MAXRHP"       "MAXNOXP"              "MAXNO2P"             
## [10] "WEEKDAYC"             "SEASONC"              "TMPpoint"            
## [13] "RHpoint"              "WSPpoint"             "MAXO3C"
##the size of samples
nrow(feature_new_train13)
## [1] 2316
nrow(feature_new_test13)
## [1] 409
source('~/PED/nnetAnalysis/function.R', echo=TRUE)
## 
## > library(nnet)
## 
## > library(randomForest)
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
## 
## > modelErrors <- function(predicted, actual) {
## +     sal <- vector(mode = "numeric", length = 3)
## +     names(sal) <- c("MAE", "RMSE", "RELE")
## +     me .... [TRUNCATED] 
## 
## > train_testErrors <- function(model, inputsTrain, targetsTrain, 
## +     inputsTest, targetsTest) {
## +     trainPredict <- predict(model, newdata = as.d .... [TRUNCATED] 
## 
## > lm_nnet_rf_error <- function(feature_new_train, feature_new_test, 
## +     dataset) {
## +     inputsTrain <- feature_new_train[, -c(ncol(feature_new_tra .... [TRUNCATED]
###train models and calculate the errors
##lm_nnet_rf_error(feature_new_test13,feature_new_train13,13)##

showing the results

load(paste("dataset_",13,"MAE.RData"))
load(paste("dataset_",13,"RMSE.RData"))
load(paste("lm_size_", "dataset_",13,".RData"))
load(paste("dataset_",13,"MAE.rf.RData"))
load(paste("dataset_",13,"RMSE.rf.RData"))

show the linear regression model errors

error_lm
## $train
##     MAE    RMSE    RELE 
## 0.07457 0.09682 0.22565 
## 
## $test
##     MAE    RMSE    RELE 
## 0.07715 0.09781 0.25043

ANN

###ANN
### when decay is 1e-4
MAE[MAE[,"decay"]==1e-4,c("size","trainMAE","testMAE")]->MAE4
MAE4[order(MAE4[,1]),]
##     size trainMAE testMAE
## MAE   11  0.03919  0.1163
## MAE   13  0.01762  0.1358
## MAE   15  0.03110  0.1193
## MAE   17  0.01239  0.1318
## MAE   19  0.02271  0.1282
## MAE   21  0.03640  0.1138
## MAE   23  0.01315  0.1342
## MAE   25  0.02412  0.1243
RMSE[RMSE[,"decay"]==1e-4,c("size","trainRMSE","testRMSE")]->RMSE4
RMSE4[order(RMSE4[,1]),]
##      size trainRMSE testRMSE
## RMSE   11   0.04985   0.1551
## RMSE   13   0.02434   0.1780
## RMSE   15   0.04051   0.1560
## RMSE   17   0.01768   0.1725
## RMSE   19   0.03166   0.1663
## RMSE   21   0.04842   0.1496
## RMSE   23   0.01852   0.1771
## RMSE   25   0.03297   0.1648
###decay is 1e-3
MAE[MAE[,"decay"]==1e-3,c("size","trainMAE","testMAE")]->MAE3
MAE3[order(MAE3[,1]),]
##     size trainMAE testMAE
## MAE   11  0.04680 0.08929
## MAE   13  0.05580 0.08293
## MAE   15  0.04740 0.08756
## MAE   17  0.04403 0.09134
## MAE   19  0.04958 0.08603
## MAE   21  0.04828 0.08706
## MAE   23  0.04642 0.08805
## MAE   25  0.04507 0.09066
RMSE[RMSE[,"decay"]==1e-3,c("size","trainRMSE","testRMSE")]->RMSE3
RMSE3[order(RMSE3[,1]),]
##      size trainRMSE testRMSE
## RMSE   11   0.06118   0.1174
## RMSE   13   0.07397   0.1062
## RMSE   15   0.06375   0.1136
## RMSE   17   0.05926   0.1191
## RMSE   19   0.06619   0.1113
## RMSE   21   0.06418   0.1131
## RMSE   23   0.06300   0.1146
## RMSE   25   0.05897   0.1181
###decay is 1e-2
MAE[MAE[,"decay"]==1e-2,c("size","trainMAE","testMAE")]->MAE2
MAE2[order(MAE2[,1]),]
##     size trainMAE testMAE
## MAE   11  0.07169 0.07518
## MAE   13  0.07172 0.07518
## MAE   15  0.07288 0.07569
## MAE   17  0.07170 0.07518
## MAE   19  0.07288 0.07570
## MAE   21  0.07287 0.07570
## MAE   23  0.07287 0.07570
## MAE   25  0.07176 0.07517
RMSE[RMSE[,"decay"]==1e-2,c("size","trainRMSE","testRMSE")]->RMSE2
RMSE2[order(RMSE2[,1]),]
##      size trainRMSE testRMSE
## RMSE   11   0.09317  0.09645
## RMSE   13   0.09320  0.09645
## RMSE   15   0.09532  0.09705
## RMSE   17   0.09318  0.09644
## RMSE   19   0.09531  0.09705
## RMSE   21   0.09531  0.09706
## RMSE   23   0.09531  0.09705
## RMSE   25   0.09324  0.09644
###decay is 1e-1
MAE[MAE[,"decay"]==1e-1,c("size","trainMAE","testMAE")]->MAE1
MAE1[order(MAE1[,1]),]
##     size trainMAE testMAE
## MAE   11  0.08041 0.07920
## MAE   13  0.08040 0.07915
## MAE   15  0.08041 0.07917
## MAE   17  0.08042 0.07921
## MAE   19  0.08040 0.07916
## MAE   21  0.08041 0.07918
## MAE   23  0.08040 0.07915
## MAE   25  0.08041 0.07917
RMSE[RMSE[,"decay"]==1e-1,c("size","trainRMSE","testRMSE")]->RMSE1
RMSE1[order(RMSE1[,1]),]
##      size trainRMSE testRMSE
## RMSE   11    0.1028  0.09972
## RMSE   13    0.1028  0.09968
## RMSE   15    0.1028  0.09970
## RMSE   17    0.1028  0.09973
## RMSE   19    0.1028  0.09969
## RMSE   21    0.1028  0.09971
## RMSE   23    0.1028  0.09968
## RMSE   25    0.1028  0.09969
###decay is 1
MAE[MAE[,"decay"]==1,c("size","trainMAE","testMAE")]->MAE0
MAE0[order(MAE0[,1]),]
##     size trainMAE testMAE
## MAE   11  0.09680 0.09837
## MAE   13  0.09681 0.09842
## MAE   15  0.09680 0.09835
## MAE   17  0.09681 0.09838
## MAE   19  0.09682 0.09844
## MAE   21  0.09680 0.09836
## MAE   23  0.09681 0.09840
## MAE   25  0.09680 0.09835
RMSE[RMSE[,"decay"]==1,c("size","trainRMSE","testRMSE")]->RMSE0
RMSE0[order(RMSE0[,1]),]
##      size trainRMSE testRMSE
## RMSE   11    0.1231   0.1212
## RMSE   13    0.1231   0.1212
## RMSE   15    0.1231   0.1212
## RMSE   17    0.1231   0.1212
## RMSE   19    0.1231   0.1213
## RMSE   21    0.1231   0.1212
## RMSE   23    0.1231   0.1212
## RMSE   25    0.1231   0.1212

randomForest

##when ntree is 500
MAE_rf[MAE_rf[,"ntree"]==500,c("mtry","trainMAE","testMAE")]->MAE500
RMSE_rf[RMSE_rf[,"ntree"]==500,c("mtry","trainRMSE","testRMSE")]->RMSE500
MAE500
##     mtry trainMAE testMAE
## MAE    3  0.03219 0.07504
## MAE    5  0.03095 0.07489
## MAE    7  0.03092 0.07511
## MAE    9  0.03027 0.07512
## MAE   11  0.03017 0.07542
## MAE   13  0.03031 0.07559
## MAE   15  0.03006 0.07555
## MAE   17  0.03016 0.07565
## MAE   19  0.03004 0.07546
RMSE500
##      mtry trainRMSE testRMSE
## RMSE    3   0.04290  0.09727
## RMSE    5   0.04187  0.09742
## RMSE    7   0.04181  0.09777
## RMSE    9   0.04084  0.09780
## RMSE   11   0.04085  0.09807
## RMSE   13   0.04073  0.09834
## RMSE   15   0.04072  0.09841
## RMSE   17   0.04077  0.09841
## RMSE   19   0.04084  0.09821
##when ntree is 1000 
MAE_rf[MAE_rf[,"ntree"]==1000,c("mtry","trainMAE","testMAE")]->MAE1000
RMSE_rf[RMSE_rf[,"ntree"]==1000,c("mtry","trainRMSE","testRMSE")]->RMSE1000
MAE1000
##     mtry trainMAE testMAE
## MAE    3  0.03191 0.07495
## MAE    5  0.03112 0.07486
## MAE    7  0.03058 0.07511
## MAE    9  0.03020 0.07504
## MAE   11  0.03027 0.07532
## MAE   13  0.03026 0.07550
## MAE   15  0.03004 0.07557
## MAE   17  0.02994 0.07545
## MAE   19  0.03026 0.07555
RMSE1000
##      mtry trainRMSE testRMSE
## RMSE    3   0.04273  0.09719
## RMSE    5   0.04184  0.09739
## RMSE    7   0.04126  0.09767
## RMSE    9   0.04109  0.09779
## RMSE   11   0.04109  0.09806
## RMSE   13   0.04083  0.09833
## RMSE   15   0.04069  0.09834
## RMSE   17   0.04069  0.09819
## RMSE   19   0.04095  0.09833
##when ntree is 1500 
MAE_rf[MAE_rf[,"ntree"]==1500,c("mtry","trainMAE","testMAE")]->MAE1500
RMSE_rf[RMSE_rf[,"ntree"]==1500,c("mtry","trainRMSE","testRMSE")]->RMSE1500
MAE1500
##     mtry trainMAE testMAE
## MAE    3  0.03199 0.07487
## MAE    5  0.03116 0.07500
## MAE    7  0.03061 0.07504
## MAE    9  0.03037 0.07533
## MAE   11  0.03019 0.07541
## MAE   13  0.03017 0.07550
## MAE   15  0.02994 0.07549
## MAE   17  0.03008 0.07558
## MAE   19  0.03008 0.07548
RMSE1500
##      mtry trainRMSE testRMSE
## RMSE    3   0.04278  0.09720
## RMSE    5   0.04186  0.09757
## RMSE    7   0.04131  0.09758
## RMSE    9   0.04094  0.09799
## RMSE   11   0.04082  0.09811
## RMSE   13   0.04090  0.09826
## RMSE   15   0.04067  0.09825
## RMSE   17   0.04064  0.09832
## RMSE   19   0.04086  0.09821
##when ntree is 2000 
MAE_rf[MAE_rf[,"ntree"]==2000,c("mtry","trainMAE","testMAE")]->MAE2000
RMSE_rf[RMSE_rf[,"ntree"]==2000,c("mtry","trainRMSE","testRMSE")]->RMSE2000
MAE2000
##     mtry trainMAE testMAE
## MAE    3  0.03200 0.07483
## MAE    5  0.03105 0.07492
## MAE    7  0.03065 0.07523
## MAE    9  0.03030 0.07519
## MAE   11  0.03019 0.07539
## MAE   13  0.03007 0.07550
## MAE   15  0.03012 0.07551
## MAE   17  0.03016 0.07556
## MAE   19  0.03008 0.07558
RMSE2000
##      mtry trainRMSE testRMSE
## RMSE    3   0.04281  0.09711
## RMSE    5   0.04183  0.09749
## RMSE    7   0.04134  0.09782
## RMSE    9   0.04100  0.09786
## RMSE   11   0.04080  0.09807
## RMSE   13   0.04068  0.09823
## RMSE   15   0.04092  0.09825
## RMSE   17   0.04079  0.09832
## RMSE   19   0.04065  0.09833
##when ntree is 2500
MAE_rf[MAE_rf[,"ntree"]==2500,c("mtry","trainMAE","testMAE")]->MAE2500
RMSE_rf[RMSE_rf[,"ntree"]==2500,c("mtry","trainRMSE","testRMSE")]->RMSE2500
MAE2500
##     mtry trainMAE testMAE
## MAE    3  0.03199 0.07480
## MAE    5  0.03091 0.07486
## MAE    7  0.03057 0.07514
## MAE    9  0.03029 0.07518
## MAE   11  0.03021 0.07533
## MAE   13  0.03013 0.07554
## MAE   15  0.03008 0.07549
## MAE   17  0.03014 0.07550
## MAE   19  0.03017 0.07556
RMSE2500
##      mtry trainRMSE testRMSE
## RMSE    3   0.04286  0.09715
## RMSE    5   0.04158  0.09741
## RMSE    7   0.04120  0.09772
## RMSE    9   0.04090  0.09786
## RMSE   11   0.04084  0.09803
## RMSE   13   0.04084  0.09829
## RMSE   15   0.04081  0.09823
## RMSE   17   0.04092  0.09829
## RMSE   19   0.04080  0.09828