logTrails A Regression Model 2 Black and White Plots

## Loading required package: Matrix
## Loading required package: mvtnorm
## Loading required package: TH.data
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + 
##     Sex + CES1 + (Age | HNDid) + (1 | subclass) + Age:IPVstatus + 
##     Age:PovStat + Age:Sex + Age:CES1 + IPVstatus:PovStat + IPVstatus:Sex + 
##     IPVstatus:CES1 + PovStat:Sex + PovStat:CES1 + Sex:CES1 + 
##     Age:IPVstatus:PovStat + Age:IPVstatus:Sex + Age:IPVstatus:CES1 + 
##     Age:PovStat:Sex + Age:Sex:CES1 + IPVstatus:PovStat:Sex + 
##     IPVstatus:Sex:CES1 + PovStat:Sex:CES1 + Age:IPVstatus:PovStat:Sex + 
##     Age:IPVstatus:Sex:CES1, data = IPVandCognitionDataSet2, na.action = na.omit)
## 
## Linear Hypotheses:
##                                         Estimate Std. Error z value
## (Intercept) == 0                         3.33888    0.15151   22.04
## Age == 0                                 0.01541    0.01058    1.46
## IPVstatus1 == 0                          0.52046    0.27764    1.87
## PovStatBelow == 0                        0.06531    0.22812    0.29
## SexMen == 0                              0.04786    0.20260    0.24
## CES11 == 0                               0.56162    0.21589    2.60
## Age:IPVstatus1 == 0                      0.04911    0.02308    2.13
## Age:PovStatBelow == 0                   -0.02151    0.01582   -1.36
## Age:SexMen == 0                         -0.00831    0.01538   -0.54
## Age:CES11 == 0                           0.02193    0.01553    1.41
## IPVstatus1:PovStatBelow == 0             1.11844    0.43889    2.55
## IPVstatus1:SexMen == 0                  -0.50893    0.59436   -0.86
## IPVstatus1:CES11 == 0                   -1.12804    0.36396   -3.10
## PovStatBelow:SexMen == 0                 0.31044    0.33102    0.94
## PovStatBelow:CES11 == 0                 -0.43739    0.16015   -2.73
## SexMen:CES11 == 0                       -0.86284    0.36807   -2.34
## Age:IPVstatus1:PovStatBelow == 0         0.11210    0.03810    2.94
## Age:IPVstatus1:SexMen == 0              -0.06167    0.04061   -1.52
## Age:IPVstatus1:CES11 == 0               -0.10191    0.02999   -3.40
## Age:PovStatBelow:SexMen == 0             0.02842    0.02713    1.05
## Age:SexMen:CES11 == 0                   -0.03213    0.03002   -1.07
## IPVstatus1:PovStatBelow:SexMen == 0     -1.02604    0.63179   -1.62
## IPVstatus1:SexMen:CES11 == 0             1.50363    0.58314    2.58
## PovStatBelow:SexMen:CES11 == 0           0.59532    0.36539    1.63
## Age:IPVstatus1:PovStatBelow:SexMen == 0 -0.08707    0.05190   -1.68
## Age:IPVstatus1:SexMen:CES11 == 0         0.15271    0.04701    3.25
##                                         Pr(>|z|)
## (Intercept) == 0                         < 2e-16
## Age == 0                                 0.14498
## IPVstatus1 == 0                          0.06085
## PovStatBelow == 0                        0.77464
## SexMen == 0                              0.81324
## CES11 == 0                               0.00928
## Age:IPVstatus1 == 0                      0.03337
## Age:PovStatBelow == 0                    0.17382
## Age:SexMen == 0                          0.58884
## Age:CES11 == 0                           0.15774
## IPVstatus1:PovStatBelow == 0             0.01082
## IPVstatus1:SexMen == 0                   0.39185
## IPVstatus1:CES11 == 0                    0.00194
## PovStatBelow:SexMen == 0                 0.34833
## PovStatBelow:CES11 == 0                  0.00631
## SexMen:CES11 == 0                        0.01907
## Age:IPVstatus1:PovStatBelow == 0         0.00326
## Age:IPVstatus1:SexMen == 0               0.12883
## Age:IPVstatus1:CES11 == 0                0.00068
## Age:PovStatBelow:SexMen == 0             0.29474
## Age:SexMen:CES11 == 0                    0.28449
## IPVstatus1:PovStatBelow:SexMen == 0      0.10437
## IPVstatus1:SexMen:CES11 == 0             0.00992
## PovStatBelow:SexMen:CES11 == 0           0.10325
## Age:IPVstatus1:PovStatBelow:SexMen == 0  0.09343
## Age:IPVstatus1:SexMen:CES11 == 0         0.00116
## (Univariate p values reported)

Age/IPV/Sex/Depression (Stratified by Gender)

hatIPVcog1 = zMixHat(IPVandCognitionDataSet2, mm2, vary = "Age=pAge, CES1=zQ(0,1),IPVstatus=zQ(0,1),Sex=zQ(Women,Men)", 
    fixedCov = "PovStat")

head(hatIPVcog1)
##   Age CES1 IPVstatus   Sex log TrailsAtestSec PovStat   hat
## 1  30    0         0 Women   0              0  0.3333 3.608
## 2  31    0         0 Women   0              0  0.3333 3.616
## 3  32    0         0 Women   0              0  0.3333 3.624
## 4  33    0         0 Women   0              0  0.3333 3.633
## 5  34    0         0 Women   0              0  0.3333 3.641
## 6  35    0         0 Women   0              0  0.3333 3.649

par(mar = c(2, 2, 0.5, 0.5), las = 1, lwd = 2, mfrow = c(1, 2))

HNDcolors = HNDpltColors()

with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "0", ], plot(pAge, hat, lty = 1, col = "black", type = "l", ylim = c(1, 
    12), ylab = "log(Trails A)", yaxt = "n", xlab = "Age", xaxt = "n", lwd = 1.5))
axis(1, cex.axis = 0.8)
axis(2, cex.axis = 0.8)
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 2, col = "black", lwd = 1.5))
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "0", ], lines(pAge, hat, lty = 3, col = "black", lwd = 1.5))
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 4, col = "black", lwd = 1.5))

legend(30, 12, zQ(DepressednoIPV, DepressedIPV, NonDepressednoIPV, NonDepressedIPV), 
    lty = 1:4, col = "black", cex = 0.75, bty = "n")
text(30, 2, "Women", adj = c(0, 0), col = "black", cex = 0.8)

with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "0", ], plot(pAge, hat, lty = 1, col = "black", typ = "l", ylim = c(1, 12), 
    ylab = "Trails A", yaxt = "n", xlab = "Age", xaxt = "n", lwd = 1.5))
axis(1, cex.axis = 0.8)
axis(2, cex.axis = 0.8)
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 2, col = "black", lwd = 1.5))
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "0", ], lines(pAge, hat, lty = 3, col = "black", lwd = 1.5))
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 4, col = "black", lwd = 1.5))


legend(30, 12, zQ(DepressednoIPV, DepressedIPV, NonDepressednoIPV, NonDepressedIPV), 
    lty = 1:4, col = "black", cex = 0.75, bty = "n")
text(30, 2, "Men", adj = c(0, 0), col = "black", cex = 0.8)

plot of chunk unnamed-chunk-1

Age/IPV/Sex/Depression (Gender indicated by color of lines)

hatIPVcog1 = zMixHat(IPVandCognitionDataSet2, mm2, vary = "Age=pAge, CES1=zQ(0,1),IPVstatus=zQ(0,1),Sex=zQ(Women,Men)", 
    fixedCov = "PovStat")

head(hatIPVcog1)
##   Age CES1 IPVstatus   Sex log TrailsAtestSec PovStat   hat
## 1  30    0         0 Women   0              0  0.3333 3.608
## 2  31    0         0 Women   0              0  0.3333 3.616
## 3  32    0         0 Women   0              0  0.3333 3.624
## 4  33    0         0 Women   0              0  0.3333 3.633
## 5  34    0         0 Women   0              0  0.3333 3.641
## 6  35    0         0 Women   0              0  0.3333 3.649

par(mar = c(4, 4, 0.5, 2), las = 1, lwd = 2)

HNDcolors = HNDpltColors()

with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "0", ], plot(pAge, hat, lty = 1, col = "dimgrey", type = "l", ylim = c(1, 
    12), ylab = "log(Trails A)", xlab = "Age", lwd = 2))
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 2, col = "dimgrey", lwd = 2))
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "0", ], lines(pAge, hat, lty = 3, col = "dimgrey", lwd = 2))
with(hatIPVcog1[hatIPVcog1$Sex == "Women" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 4, col = "dimgrey", lwd = 2))

with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "0", ], lines(pAge, hat, lty = 1, col = "black", typ = "l", ylim = c(1, 
    12), ylab = "Trails A", xlab = "Age", lwd = 2.5))
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "1" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 2, col = "black", lwd = 2.5))
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "0", ], lines(pAge, hat, lty = 3, col = "black", lwd = 2.5))
with(hatIPVcog1[hatIPVcog1$Sex == "Men" & hatIPVcog1$CES1 == "0" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 4, col = "black", lwd = 2.5))


legend(30, 12, zQ(DepressednoIPV, DepressedIPV, NonDepressednoIPV, NonDepressedIPV), 
    lty = 1:4, col = "black", cex = 0.9, bty = "n")
text(30, 2, "Women in Gray", adj = c(0, 0), col = "dimgrey")
text(30, 1, "Men in Black", adj = c(0, 0), col = "black")

plot of chunk unnamed-chunk-2

Age/IPV/Poverty

hatIPVcog1 = zMixHat(IPVandCognitionDataSet2, mm2, vary = "Age=pAge, PovStat=zQ(abovePovStat,belowPovStat),IPVstatus=zQ(0,1)", 
    fixedCov = c("Sex", "CES1"))

head(hatIPVcog1)
##   Age      PovStat IPVstatus log TrailsAtestSec    Sex   CES1   hat
## 1  30 abovePovStat         0   0              0 0.4286 0.4286 3.902
## 2  31 abovePovStat         0   0              0 0.4286 0.4286 3.917
## 3  32 abovePovStat         0   0              0 0.4286 0.4286 3.933
## 4  33 abovePovStat         0   0              0 0.4286 0.4286 3.948
## 5  34 abovePovStat         0   0              0 0.4286 0.4286 3.964
## 6  35 abovePovStat         0   0              0 0.4286 0.4286 3.979

par(mar = c(4, 4, 0.5, 2), las = 1, lwd = 2)

HNDcolors = HNDpltColors()

with(hatIPVcog1[hatIPVcog1$PovStat == "abovePovStat" & hatIPVcog1$IPVstatus == 
    "0", ], plot(pAge, hat, lty = 1, col = "black", type = "l", ylim = c(1, 
    12), ylab = "log(Trails A)", xlab = "Age"))
with(hatIPVcog1[hatIPVcog1$PovStat == "abovePovStat" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 2, col = "black"))
with(hatIPVcog1[hatIPVcog1$PovStat == "belowPovStat" & hatIPVcog1$IPVstatus == 
    "0", ], lines(pAge, hat, lty = 3, col = "black"))
with(hatIPVcog1[hatIPVcog1$PovStat == "belowPovStat" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 4, col = "black"))


legend(30, 12, zQ(AbovePovStatnoIPV, AbovePovStatIPV, BelowPovStatnoIPV, belowPovStatIPV), 
    lty = 1:4, col = "black", cex = 0.95, bty = "n")

plot of chunk unnamed-chunk-3

Age/IPV/Poverty (IPV status indicated by color of lines)

hatIPVcog1 = zMixHat(IPVandCognitionDataSet2, mm2, vary = "Age=pAge, PovStat=zQ(abovePovStat,belowPovStat),IPVstatus=zQ(0,1)", 
    fixedCov = c("Sex", "CES1"))

head(hatIPVcog1)
##   Age      PovStat IPVstatus log TrailsAtestSec    Sex   CES1   hat
## 1  30 abovePovStat         0   0              0 0.4286 0.4286 3.902
## 2  31 abovePovStat         0   0              0 0.4286 0.4286 3.917
## 3  32 abovePovStat         0   0              0 0.4286 0.4286 3.933
## 4  33 abovePovStat         0   0              0 0.4286 0.4286 3.948
## 5  34 abovePovStat         0   0              0 0.4286 0.4286 3.964
## 6  35 abovePovStat         0   0              0 0.4286 0.4286 3.979

par(mar = c(4, 4, 0.5, 2), las = 1, lwd = 2)

HNDcolors = HNDpltColors()

with(hatIPVcog1[hatIPVcog1$PovStat == "abovePovStat" & hatIPVcog1$IPVstatus == 
    "0", ], plot(pAge, hat, lty = 1, col = "dimgrey", type = "l", ylim = c(1, 
    12), ylab = "log(Trails A)", xlab = "Age"))
with(hatIPVcog1[hatIPVcog1$PovStat == "abovePovStat" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 2, col = "black"))
with(hatIPVcog1[hatIPVcog1$PovStat == "belowPovStat" & hatIPVcog1$IPVstatus == 
    "0", ], lines(pAge, hat, lty = 3, col = "dimgrey"))
with(hatIPVcog1[hatIPVcog1$PovStat == "belowPovStat" & hatIPVcog1$IPVstatus == 
    "1", ], lines(pAge, hat, lty = 4, col = "black"))


legend(30, 12, zQ(AbovePovStatnoIPV, AbovePovStatIPV, BelowPovStatnoIPV, belowPovStatIPV), 
    lty = 1:4, col = "black", cex = 0.95, bty = "n")
text(30, 2, "IPV in Black", adj = c(0, 0), col = "black", cex = 0.95)
text(30, 1, "No IPV in Gray", adj = c(0, 0), col = "dimgrey", cex = 0.95)

plot of chunk unnamed-chunk-4