data <- read.csv("activity.csv")
summary(data)
## steps date interval
## Min. : 0.00 2012-10-01: 288 Min. : 0.0
## 1st Qu.: 0.00 2012-10-02: 288 1st Qu.: 588.8
## Median : 0.00 2012-10-03: 288 Median :1177.5
## Mean : 37.38 2012-10-04: 288 Mean :1177.5
## 3rd Qu.: 12.00 2012-10-05: 288 3rd Qu.:1766.2
## Max. :806.00 2012-10-06: 288 Max. :2355.0
## NA's :2304 (Other) :15840
1.Calculate the total number of steps taken per day
stepsPday <- aggregate(steps~date,data,sum,na.rm=TRUE)
head(stepsPday)
## date steps
## 1 2012-10-02 126
## 2 2012-10-03 11352
## 3 2012-10-04 12116
## 4 2012-10-05 13294
## 5 2012-10-06 15420
## 6 2012-10-07 11015
2.If you do not understand the difference between a histogram and a barplot, research the difference between them. Make a histogram of the total number of steps taken each day
hist(stepsPday$steps)
3.Calculate and report the mean and median of the total number of steps taken per day
mean_stepsperday <- mean(stepsPday$steps)
mean_stepsperday
## [1] 10766.19
median_stepsperday <- median(stepsPday$steps)
median_stepsperday
## [1] 10765
1.Make a time series plot (i.e. type = “l”) of the 5-minute interval (x-axis) and the average number of steps taken, averaged across all days (y-axis)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.1
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
stepsbyInterval <- summarize(group_by(data,interval),steps=mean(steps,na.rm=TRUE))
plot(steps~interval,data=stepsbyInterval,type='l',main="the average number of steps")
2.Which 5-minute interval, on average across all the days in the dataset, contains the maximum number of steps?
maxstepsbyInterval <- stepsbyInterval[which.max(stepsbyInterval$steps),]$interval
maxstepsbyInterval
## [1] 835
1.Calculate and report the total number of missing values in the dataset (i.e. the total number of rows with NAs)
totalmissingdata <- sum(is.na(data$steps))
totalmissingdata
## [1] 2304
2.Devise a strategy for filling in all of the missing values in the dataset. The strategy does not need to be sophisticated. For example, you could use the mean/median for that day, or the mean for that 5-minute interval, etc.
getmeansteps <- function(interval){
stepsbyInterval[stepsbyInterval$interval==interval,]$steps
}
3.Create a new dataset that is equal to the original dataset but with the missing data filled in.
datanoNA <-data
for(i in 1:nrow(datanoNA)){
if(is.na(datanoNA[i,]$steps)){
datanoNA[i,]$steps <- getmeansteps(datanoNA[i,]$interval)
}
}
head(datanoNA)
## steps date interval
## 1 1.7169811 2012-10-01 0
## 2 0.3396226 2012-10-01 5
## 3 0.1320755 2012-10-01 10
## 4 0.1509434 2012-10-01 15
## 5 0.0754717 2012-10-01 20
## 6 2.0943396 2012-10-01 25
4.Make a histogram of the total number of steps taken each day and Calculate and report the mean and median total number of steps taken per day. Do these values differ from the estimates from the first part of the assignment? What is the impact of imputing missing data on the estimates of the total daily number of steps?
totstepsdatanoNA <- aggregate(steps~date,datanoNA,sum,na.rm=TRUE)
hist(totstepsdatanoNA$steps)
1.Create a new factor variable in the dataset with two levels – “weekday” and “weekend” indicating whether a given date is a weekday or weekend day.
datanoNA$date <-as.Date(strptime(datanoNA$date,format="%Y-%m-%d"))
class(datanoNA$date)
## [1] "Date"
datanoNA$day <- weekdays(datanoNA$date)
for(i in 1:nrow(datanoNA)){
if(datanoNA[i,]$day %in% c("토요일","일요일")){
datanoNA[i,]$day <-"weekend"
}else{
datanoNA[i,]$day <-"weekday"
}
}
stepsbyday <- aggregate(steps~interval+day,datanoNA,mean)
head(stepsbyday)
## interval day steps
## 1 0 weekday 2.25115304
## 2 5 weekday 0.44528302
## 3 10 weekday 0.17316562
## 4 15 weekday 0.19790356
## 5 20 weekday 0.09895178
## 6 25 weekday 1.59035639
2.Make a panel plot containing a time series plot (i.e. type = “l”) of the 5-minute interval (x-axis) and the average number of steps taken, averaged across all weekday days or weekend days (y-axis). See the README file in the GitHub repository to see an example of what this plot should look like using simulated data.
library(ggplot2)
g<-ggplot(stepsbyday,aes(interval,steps))
g+geom_line()+
facet_grid(.~day)+
labs(x="interval")+
labs(y="steps")+
labs(title="comparing the average number of steps by interval across weekdays and weekends")