Exam # 2

Holly Widen

date()
## [1] "Tue Oct 30 13:45:01 2012"

Due Date/Time: October 30, 2012, 1:45pm
The points per quesion are given in parentheses.

(1) The UScereal (MASS package) contains many variables regarding breakfast cereals. One variable is the amount of sugar per portion and another is shelf position (counting from the floor up). Create side-by-side box plots showing the distribution of sugar by shelf number. Perform a t test to determine if there is a significant difference in the amount of sugar in cereals on the first and second shelves. What do you conclude? (20)

require(MASS)
## Loading required package: MASS
head(UScereal)
##                           mfr calories protein   fat sodium  fibre carbo
## 100% Bran                   N    212.1  12.121 3.030  393.9 30.303 15.15
## All-Bran                    K    212.1  12.121 3.030  787.9 27.273 21.21
## All-Bran with Extra Fiber   K    100.0   8.000 0.000  280.0 28.000 16.00
## Apple Cinnamon Cheerios     G    146.7   2.667 2.667  240.0  2.000 14.00
## Apple Jacks                 K    110.0   2.000 0.000  125.0  1.000 11.00
## Basic 4                     G    173.3   4.000 2.667  280.0  2.667 24.00
##                           sugars shelf potassium vitamins
## 100% Bran                  18.18     3    848.48 enriched
## All-Bran                   15.15     3    969.70 enriched
## All-Bran with Extra Fiber   0.00     3    660.00 enriched
## Apple Cinnamon Cheerios    13.33     1     93.33 enriched
## Apple Jacks                14.00     2     30.00 enriched
## Basic 4                    10.67     3    133.33 enriched
require(ggplot2)
## Loading required package: ggplot2
ggplot(UScereal, aes(x = factor(shelf), y = sugars)) + geom_boxplot()

plot of chunk cerealboxplot

attach(UScereal)
t.test(sugars[shelf == 1], sugars[shelf == 2])
## 
##  Welch Two Sample t-test
## 
## data:  sugars[shelf == 1] and sugars[shelf == 2] 
## t = -3.975, df = 30, p-value = 0.0004086
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval:
##  -9.404 -3.021 
## sample estimates:
## mean of x mean of y 
##     6.295    12.508
detach(UScereal)

Since the p-value is close to zero, the null hypothesis can be rejected. Thus, there is a significant difference in the amount of sugar in cereals on the 1st and 2nd shelves.

(2) The data set USmelanoma (HSAUR2 package) contains male mortality counts per one million inhabitants by state along with the latitude and longitude centroid of the state. (40)

a. Create a scatter plot of mortality versus latitude using latitude as the explanatory variable.

require(HSAUR2)
## Loading required package: HSAUR2
## Warning: package 'HSAUR2' was built under R version 2.15.2
## Loading required package: lattice
## Loading required package: scatterplot3d
head(USmelanoma)
##             mortality latitude longitude ocean
## Alabama           219     33.0      87.0   yes
## Arizona           160     34.5     112.0    no
## Arkansas          170     35.0      92.5    no
## California        182     37.5     119.5   yes
## Colorado          149     39.0     105.5    no
## Connecticut       159     41.8      72.8   yes
p = ggplot(USmelanoma, aes(x = latitude, y = mortality)) + geom_point() + ylab("Mortality") + 
    xlab("Latitude")
p

plot of chunk Scatterplot

b. Add the linear regression line to your scatter plot.

p + geom_smooth(method = lm, se = FALSE)

plot of chunk AddRegressionLine

c. Regress mortality on latitude and interpret the value of the slope coefficient.

model1 = lm(mortality ~ latitude, data = USmelanoma)
summary(model1)
## 
## Call:
## lm(formula = mortality ~ latitude, data = USmelanoma)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -38.97 -13.18   0.97  12.01  43.94 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  389.189     23.812   16.34  < 2e-16 ***
## latitude      -5.978      0.598   -9.99  3.3e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 19.1 on 47 degrees of freedom
## Multiple R-squared: 0.68,    Adjusted R-squared: 0.673 
## F-statistic: 99.8 on 1 and 47 DF,  p-value: 3.31e-13

The slope coefficient is approximately -5.98 and demonstrates a significantly inverse (or negative) relationship between mortality and latitude.

d. Determine the sum of squared errors.

sum(residuals(lm(USmelanoma$mortality ~ USmelanoma$latitude))^2)
## [1] 17173

The SSE is about 17,173.

e. Use density and box plots to examine the model assumptions. What do you conclude?

boxplot(mortality ~ cut(latitude, breaks = quantile(latitude)), data = USmelanoma)

plot of chunk boxplot

require(sm)
## Loading required package: sm
## Warning: package 'sm' was built under R version 2.15.2
## Package `sm', version 2.2-4.1 Copyright (C) 1997, 2000, 2005, 2007, 2008,
## A.W.Bowman & A.Azzalini Type help(sm) for summary information
res = residuals(model1)
sm.density(res, xlab = "Model Residuals", model = "Normal")

plot of chunk normality

Based on these two plots, the model appears to be a decent fit for the data. There is no evidence to reject the assumptions of linearity and normality.

(3) Davies and Goldsmith (1972) investigated the relationship between abrasion loss (abrasion) of samples of rubber (grams per hour) as a function of hardness (higher values indicate harder rubber) and tensile strength (kg/cm2 ). The data are in AbrasionLoss.txt. Input the data using AL = read.table(“http://myweb.fsu.edu/jelsner/AbrasionLoss.txt”, header=TRUE) (40)

a. Create a scatter plot matrix of the three variables. Based on the scatter of points in the plot of abrasion versus strength does it appear that tensile strength would be helpful in explaining abrasion loss?

AL = read.table("http://myweb.fsu.edu/jelsner/AbrasionLoss.txt", header = TRUE)
head(AL)
##   abrasion hardness strength
## 1      372       45      162
## 2      206       55      233
## 3      175       61      232
## 4      154       66      231
## 5      136       71      231
## 6      112       71      237
pairs(AL, panel = panel.smooth)

plot of chunk ScatterPlotMatrix

No, it appears that the tensile strength would not be very helpful in explaining abrasion loss.

b. Regress abrasion loss on hardness and strength. What is the adjusted R squared value? Is strength an important explanatory variable after accounting for hardness?

model2 = lm(abrasion ~ hardness + strength, data = AL)
summary(model2)
## 
## Call:
## lm(formula = abrasion ~ hardness + strength, data = AL)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -79.38 -14.61   3.82  19.75  65.98 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  885.161     61.752   14.33  3.8e-14 ***
## hardness      -6.571      0.583  -11.27  1.0e-11 ***
## strength      -1.374      0.194   -7.07  1.3e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 36.5 on 27 degrees of freedom
## Multiple R-squared: 0.84,    Adjusted R-squared: 0.828 
## F-statistic:   71 on 2 and 27 DF,  p-value: 1.77e-11

The adjusted R squared value is roughly 83% (0.8284). Yes, the strength is an important explanatory variable after accounting for hardness.

c. On average how much additional abrasion is lost for every 1 kg/cm2 increase in tensile strength?
On average, for every 1 kg/cm2 increase in tensile strength, abrasion loss is about -1.37.

d. Check the correlations between the explanatory variables. Could collinearity be a problem for interpreting the model?

cor(AL)
##          abrasion hardness strength
## abrasion   1.0000  -0.7377  -0.2984
## hardness  -0.7377   1.0000  -0.2992
## strength  -0.2984  -0.2992   1.0000
suppressMessages(require(psych))
## Warning: package 'psych' was built under R version 2.15.2
pairs.panels(AL)

plot of chunk cor

No, collinearity is not a problem for interpreting this model.

e. Find the 95% prediction interval for the abrasion corresponding to a new rubber sample having a hardness of 60 units and a tensile strength of 200 kg/cm2.

predict(model2, data.frame(hardness = 60, strength = 200), interval = "prediction")
##   fit   lwr   upr
## 1 216 138.9 293.2