library(gridExtra)
## Warning: package 'gridExtra' was built under R version 3.2.5
library(grid)
library(car)
## Warning: package 'car' was built under R version 3.2.5
library(intsvy)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
# Veri setlerini yeniden hesaplanmis ESCS degerleri ile birlestirme

    # 2003

      colnames(escs_2003)[1:3] <- c("CNT","SCHOOLID","STIDSTD") 

      pisa_2003_stu <- merge(pisa_2003_stu,escs_2003,by=c("CNT","SCHOOLID","STIDSTD") ,all=TRUE)

    # 2006

      levels(escs_2006$cnt)
##  [1] "ARG" "AUS" "AUT" "BEL" "BGR" "BRA" "CAN" "CHE" "CHL" "COL" "CZE"
## [12] "DEU" "DNK" "ESP" "EST" "FIN" "FRA" "GBR" "GRC" "HKG" "HRV" "HUN"
## [23] "IDN" "IRL" "ISL" "ISR" "ITA" "JOR" "JPN" "KOR" "LTU" "LUX" "LVA"
## [34] "MAC" "MEX" "MNE" "NLD" "NOR" "NZL" "POL" "PRT" "QAT" "ROU" "RUS"
## [45] "SVK" "SVN" "SWE" "TAP" "THA" "TUN" "TUR" "URY" "USA"
      levels(escs_2006$cnt) <- c("Argentina","Australia","Austria","Belgium","Bulgaria"
                                     ,"Brazil","Canada","Switzerland","Chile","Colombia",
                                     "Czech Republic","Germany","Denmark","Spain","Estonia",
                                     "Finland","France","United Kingdom","Greece",
                                     "Hong Kong-China","Croatia","Hungary","Indonesia","Ireland",
                                     "Iceland","Israel", "Italy","Jordan","Japan","Korea",
                                     "Lithuania","Luxembourg","Latvia","Macao-China",
                                     "Mexico","Montenegro","Netherlands","Norway","New Zealand",
                                     "Poland","Portugal","Qatar","Romania","Russian Federation",
                                     "Slovak Republic","Slovenia ","Sweden",
                                     "Chinese Taipei","Thailand","Tunisia","Turkey","Uruguay",
                                     "United States")

          levels(escs_2006$cnt)
##  [1] "Argentina"          "Australia"          "Austria"           
##  [4] "Belgium"            "Bulgaria"           "Brazil"            
##  [7] "Canada"             "Switzerland"        "Chile"             
## [10] "Colombia"           "Czech Republic"     "Germany"           
## [13] "Denmark"            "Spain"              "Estonia"           
## [16] "Finland"            "France"             "United Kingdom"    
## [19] "Greece"             "Hong Kong-China"    "Croatia"           
## [22] "Hungary"            "Indonesia"          "Ireland"           
## [25] "Iceland"            "Israel"             "Italy"             
## [28] "Jordan"             "Japan"              "Korea"             
## [31] "Lithuania"          "Luxembourg"         "Latvia"            
## [34] "Macao-China"        "Mexico"             "Montenegro"        
## [37] "Netherlands"        "Norway"             "New Zealand"       
## [40] "Poland"             "Portugal"           "Qatar"             
## [43] "Romania"            "Russian Federation" "Slovak Republic"   
## [46] "Slovenia "          "Sweden"             "Chinese Taipei"    
## [49] "Thailand"           "Tunisia"            "Turkey"            
## [52] "Uruguay"            "United States"
        colnames(escs_2006)[1:3] <- c("CNT","SCHOOLID","STIDSTD")
        
        pisa_2006_stu <- merge(pisa_2006_stu,escs_2006,by=c("CNT","SCHOOLID","STIDSTD") ,all=TRUE)

    # 2009

        levels(escs_2009$cnt)
##  [1] "ALB" "ARE" "ARG" "AUS" "AUT" "BEL" "BGR" "BRA" "CAN" "CHE" "CHL"
## [12] "COL" "CRI" "CZE" "DEU" "DNK" "ESP" "EST" "FIN" "FRA" "GBR" "GEO"
## [23] "GRC" "HKG" "HRV" "HUN" "IDN" "IRL" "ISL" "ISR" "ITA" "JOR" "JPN"
## [34] "KAZ" "KOR" "LTU" "LUX" "LVA" "MAC" "MDA" "MEX" "MLT" "MNE" "MYS"
## [45] "NLD" "NOR" "NZL" "PER" "POL" "PRT" "QAT" "ROU" "RUS" "SGP" "SVK"
## [56] "SVN" "SWE" "TAP" "THA" "TTO" "TUN" "TUR" "URY" "USA"
          levels(escs_2009$cnt) <- c("Albania","United Arab Emirates","Argentina","Australia",
                                     "Austria","Belgium","Bulgaria","Brazil","Canada",
                                     "Switzerland","Chile","Colombia","Costa Rica",
                                     "Czech Republic","Germany","Denmark",
                                     "Spain","Estonia","Finland","France","United Kingdom",
                                     "Georgia","Greece","Hong Kong-China","Croatia","Hungary",
                                     "Indonesia","Ireland","Iceland","Israel", "Italy","Jordan",
                                     "Japan","Kazakhstan","Korea","Lithuania","Luxembourg",
                                     "Latvia","Macao-China","Republic of Moldova","Mexico",
                                     "Malta","Montenegro","Malaysia","Netherlands","Norway",
                                     "New Zealand","Peru","Poland","Portugal","Qatar","Romania",
                                     "Russian Federation","Singapore","Slovak Republic",
                                     "Slovenia","Sweden","Chinese Taipei","Thailand",
                                     "Trinidad and Tobago","Tunisia","Turkey","Uruguay",
                                     "United States")

          levels(escs_2009$cnt)
##  [1] "Albania"              "United Arab Emirates" "Argentina"           
##  [4] "Australia"            "Austria"              "Belgium"             
##  [7] "Bulgaria"             "Brazil"               "Canada"              
## [10] "Switzerland"          "Chile"                "Colombia"            
## [13] "Costa Rica"           "Czech Republic"       "Germany"             
## [16] "Denmark"              "Spain"                "Estonia"             
## [19] "Finland"              "France"               "United Kingdom"      
## [22] "Georgia"              "Greece"               "Hong Kong-China"     
## [25] "Croatia"              "Hungary"              "Indonesia"           
## [28] "Ireland"              "Iceland"              "Israel"              
## [31] "Italy"                "Jordan"               "Japan"               
## [34] "Kazakhstan"           "Korea"                "Lithuania"           
## [37] "Luxembourg"           "Latvia"               "Macao-China"         
## [40] "Republic of Moldova"  "Mexico"               "Malta"               
## [43] "Montenegro"           "Malaysia"             "Netherlands"         
## [46] "Norway"               "New Zealand"          "Peru"                
## [49] "Poland"               "Portugal"             "Qatar"               
## [52] "Romania"              "Russian Federation"   "Singapore"           
## [55] "Slovak Republic"      "Slovenia"             "Sweden"              
## [58] "Chinese Taipei"       "Thailand"             "Trinidad and Tobago" 
## [61] "Tunisia"              "Turkey"               "Uruguay"             
## [64] "United States"
          colnames(escs_2009)[1:3] <- c("CNT","SCHOOLID","StIDStd")
        
         pisa_2009_stu <- merge(pisa_2009_stu,escs_2009,by=c("CNT","SCHOOLID","StIDStd") ,all=TRUE)

      # 2012

          levels(escs_2012$cnt)
##  [1] "ALB" "ARE" "ARG" "AUS" "AUT" "BEL" "BGR" "BRA" "CAN" "CHE" "CHL"
## [12] "COL" "CRI" "CZE" "DEU" "DNK" "ESP" "EST" "FIN" "FRA" "GBR" "GRC"
## [23] "HKG" "HRV" "HUN" "IDN" "IRL" "ISL" "ISR" "ITA" "JOR" "JPN" "KAZ"
## [34] "KOR" "LTU" "LUX" "LVA" "MAC" "MEX" "MNE" "MYS" "NLD" "NOR" "NZL"
## [45] "PER" "POL" "PRT" "QAT" "QUC" "ROU" "RUS" "SGP" "SVK" "SVN" "SWE"
## [56] "TAP" "THA" "TUN" "TUR" "URY" "USA" "VNM"
          levels(escs_2012$cnt) <- c("Albania","United Arab Emirates","Argentina","Australia",
                                     "Austria","Belgium",
                                     "Bulgaria","Brazil","Canada",
                                     "Switzerland","Chile","Colombia","Costa Rica",
                                     "Czech Republic","Germany","Denmark",
                                     "Spain","Estonia","Finland","France","United Kingdom",
                                     "Greece","Hong Kong-China",
                                     "Croatia","Hungary","Indonesia","Ireland","Iceland",
                                     "Israel","Italy","Jordan","Japan","Kazakhstan","Korea",
                                     "Lithuania","Luxembourg","Latvia","Macao-China",
                                     "Mexico","Montenegro","Malaysia","Netherlands","Norway",
                                     "New Zealand","Peru","Poland","Portugal","Qatar",
                                     "Shanghai-China","Romania","Russian Federation","Singapore",
                                     "Slovak Republic","Slovenia","Sweden","Chinese Taipei",
                                     "Thailand","Tunisia","Turkey",
                                     "Uruguay","United States of America","Viet Nam")

          levels(escs_2012$cnt)
##  [1] "Albania"                  "United Arab Emirates"    
##  [3] "Argentina"                "Australia"               
##  [5] "Austria"                  "Belgium"                 
##  [7] "Bulgaria"                 "Brazil"                  
##  [9] "Canada"                   "Switzerland"             
## [11] "Chile"                    "Colombia"                
## [13] "Costa Rica"               "Czech Republic"          
## [15] "Germany"                  "Denmark"                 
## [17] "Spain"                    "Estonia"                 
## [19] "Finland"                  "France"                  
## [21] "United Kingdom"           "Greece"                  
## [23] "Hong Kong-China"          "Croatia"                 
## [25] "Hungary"                  "Indonesia"               
## [27] "Ireland"                  "Iceland"                 
## [29] "Israel"                   "Italy"                   
## [31] "Jordan"                   "Japan"                   
## [33] "Kazakhstan"               "Korea"                   
## [35] "Lithuania"                "Luxembourg"              
## [37] "Latvia"                   "Macao-China"             
## [39] "Mexico"                   "Montenegro"              
## [41] "Malaysia"                 "Netherlands"             
## [43] "Norway"                   "New Zealand"             
## [45] "Peru"                     "Poland"                  
## [47] "Portugal"                 "Qatar"                   
## [49] "Shanghai-China"           "Romania"                 
## [51] "Russian Federation"       "Singapore"               
## [53] "Slovak Republic"          "Slovenia"                
## [55] "Sweden"                   "Chinese Taipei"          
## [57] "Thailand"                 "Tunisia"                 
## [59] "Turkey"                   "Uruguay"                 
## [61] "United States of America" "Viet Nam"
        colnames(escs_2012)[1:3] <- c("CNT","SCHOOLID","StIDStd")
        pisa_2012_stu <- merge(pisa_2012_stu,escs_2012,by=c("CNT","SCHOOLID","StIDStd") ,all=TRUE)
# Simdide 2003, 2006, 2009, 2012,2015 yillarinda 2015 icin yaptigimiz gibi Turkiye verisini suzelim.

        pisa_2015_stu_TUR <- subset(pisa_2015_stu,CNT=='Turkey')
        pisa_2012_stu_TUR <- subset(pisa_2012_stu,CNT=="Turkey")
        pisa_2009_stu_TUR <- subset(pisa_2009_stu,CNT=='Turkey')
        pisa_2006_stu_TUR <- subset(pisa_2006_stu,CNT=='Turkey')
        pisa_2003_stu_TUR <- subset(pisa_2003_stu,CNT=='TUR')


  # OECD verisini suzelim

        pisa_2015_stu_OECD <- subset(pisa_2015_stu,OECD=="Yes")
        pisa_2012_stu_OECD <- subset(pisa_2012_stu,OECD=="OECD")
        pisa_2009_stu_OECD <- subset(pisa_2009_stu,OECD=="OECD")
        pisa_2006_stu_OECD <- subset(pisa_2006_stu,OECD=="OECD")
        pisa_2003_stu_OECD <- subset(pisa_2003_stu,OECD=="OECD country")

  # AB verisini suzelim

        AB <- c("AUT","BEL","BGR","HRV","CYP","CZE","DNK","EST","FIN","FRA","DEU","GRC","HUN",
                "IRL","ITA","LVA","LTU","LUX","MLT","NLD","POL","PRT","ROU","SVK","SVN","ESP",
                "SWE")

        AB2 <- c("Austria","Belgium","Bulgaria","Croatia","Cyprus","Czech Republic","Denmark",
                 "Estonia","Finland","France","Germany","Greece","Hungary","Ireland","Italy",
                 "Latvia","Lithuania","Luxembourg","Malta","Netherlands","Poland","Portugal",
                 "Romania","Slovak Republic","Slovenia ","Spain","Sweden")

        AB3 <- c("Austria","Belgium","Bulgaria","Croatia","Cyprus","Czech Republic","Denmark",
                 "Estonia","Finland","France","Germany","Greece","Hungary","Ireland","Italy",
                 "Latvia","Lithuania","Luxembourg","Malta","Netherlands","Poland","Portugal",
                 "Romania","Slovak Republic","Slovenia","Spain","Sweden")
        

            pisa_2003_stu_AB <- subset(pisa_2003_stu, CNT %in% AB)
            pisa_2006_stu_AB <- subset(pisa_2006_stu, CNT %in% AB2)
            pisa_2009_stu_AB <- subset(pisa_2009_stu, CNT %in% AB3)
            pisa_2012_stu_AB <- subset(pisa_2012_stu, CNT %in% AB3)
            pisa_2015_stu_AB <- subset(pisa_2015_stu, CNT %in% AB3)

# Simdide 2003, 2006, 2009, 2012,2015 yillarinda Okul seviyesinde Turkiye verisini suzelim

        pisa_2015_sch_TUR <- subset(pisa_2015_sch,CNT=='Turkey')
        pisa_2012_sch_TUR <- subset(pisa_2012_sch,CNT=="Turkey")
        pisa_2009_sch_TUR <- subset(pisa_2009_sch,CNT=='Turkey')
        pisa_2006_sch_TUR <- subset(pisa_2006_sch,CNT=='Turkey')
        pisa_2003_sch_TUR <- subset(pisa_2003_sch,CNT=='TUR')


  pisa_2015_stu_TUR$bolge <- NA

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 01: TR1 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 02: TR1 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 03: TR1 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "ISTANBUL"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 04: TR2 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 05: TR2 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 06: TR2 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "BatiMarmara"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 07: TR3 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 08: TR3 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 09: TR3 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "Ege"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 10: TR4 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 11: TR4 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 12: TR4 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "DoguMarmara"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 13: TR5 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 14: TR5 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 15: TR5 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "BatiAnadolu"
                    
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 16: TR6 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 17: TR6 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 18: TR6 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "Akdeniz"
                    
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 19: TR7 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 20: TR7 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 21: TR7 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "OrtaAnadolu"
                            
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 22: TR8 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 23: TR8 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 24: TR8 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "BatiKaradeniz"
                    
    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 25: TR9 BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 26: TR9 GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 27: TR9 VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "DoguKaradeniz"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 28: TRA BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 29: TRA GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 30: TRA VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "KuzeydoguAnadolu"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 31: TRB BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 32: TRB GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 33: TRB VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "OrtadoguAnadolu"

    pisa_2015_stu_TUR[pisa_2015_stu_TUR$STRATUM=="TUR - stratum 34: TRC BASIC EDUCATION" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 35: TRC GENERAL SECONDARY" |
                      pisa_2015_stu_TUR$STRATUM=="TUR - stratum 36: TRC VOCATIONAL AND TECHNICAL SECONDARY",]$bolge <- "GuneydoguAnadolu"

    pisa_2015_stu_TUR$bolge <- factor(pisa_2015_stu_TUR$bolge)
  
  # Okul ve Ogrenci seviyesindeki verileri birlestirelim

        pisa_2003_TUR <- merge(pisa_2003_stu_TUR,
                               pisa_2003_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

       
        pisa_2006_TUR <- merge(pisa_2006_stu_TUR,
                               pisa_2006_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

        pisa_2009_TUR <- merge(pisa_2009_stu_TUR,
                               pisa_2009_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

         pisa_2012_TUR <- merge(pisa_2009_stu_TUR,
                               pisa_2009_sch_TUR,
                               by=c("CNT","SCHOOLID") ,all=TRUE)

        pisa_2015_TUR <- merge(pisa_2015_stu_TUR,
                               pisa_2015_sch_TUR,
                               by=c("CNT","CNTSCHID") ,all=TRUE)

        pisa_2015      <- merge(pisa_2015_stu,
                                pisa_2015_sch,
                                by=c("CNT","CNTSCHID") ,all=TRUE)

         pisa_2015_OECD <- subset(pisa_2015,OECD.x=="Yes")

         pisa_2015_AB <- subset(pisa_2015, CNT %in% AB3)

cor(pisa_2015_stu_TUR\(MOTIVAT,as.numeric(pisa_2015_stu_TUR\)ST119Q01NA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(MOTIVAT,as.numeric(pisa_2015_stu_TUR\)ST119Q02NA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(MOTIVAT,as.numeric(pisa_2015_stu_TUR\)ST119Q03NA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(MOTIVAT,as.numeric(pisa_2015_stu_TUR\)ST119Q04NA),use=“pairwise.complete.obs”) cor(pisa_2015_stu_TUR\(MOTIVAT,as.numeric(pisa_2015_stu_TUR\)ST119Q05NA),use=“pairwise.complete.obs”)

ST119Q01NA - Derslerimin birçogunda veya hepsinde en iyi notlari istiyorum.

   tur <- pisa2015.table(variable="ST119Q01NA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST119Q01NA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST119Q01NA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST119Q01NA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST119Q01NA, dat=ab,mean)

   q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST119Q01NA <- factor(q$ST119Q01NA,
                          levels=c("Strongly disagree","Disagree","Agree","Strongly agree"),
                          labels=c("Tamamen Katilmiyorum","Katilmiyorum",
                                   "Katiliyorum","Tamamen Katiliyorum")
                          )

  q
##              ST119Q01NA Percentage                      tip
## 1  Tamamen Katilmiyorum   3.820000                  Türkiye
## 2          Katilmiyorum   2.730000                  Türkiye
## 3           Katiliyorum  23.730000                  Türkiye
## 4   Tamamen Katiliyorum  69.720000                  Türkiye
## 5  Tamamen Katilmiyorum   2.974857 OECD Ülkeleri Ortalamasi
## 6          Katilmiyorum  13.624571 OECD Ülkeleri Ortalamasi
## 7           Katiliyorum  42.774000 OECD Ülkeleri Ortalamasi
## 8   Tamamen Katiliyorum  40.626571 OECD Ülkeleri Ortalamasi
## 9           Katiliyorum  46.509167   AB Ülkeleri Ortalamasi
## 10         Katilmiyorum  17.022500   AB Ülkeleri Ortalamasi
## 11  Tamamen Katiliyorum  32.917500   AB Ülkeleri Ortalamasi
## 12 Tamamen Katilmiyorum   3.550417   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST119Q01NA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Derslerimin birçogunda veya hepsinde en iyi notlari istiyorum", 
              x = "", y = "Yüzde",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 95, ymax = 95)

  plot

## png 
##   2

ST119Q02NA - Mezun oldugumda mevcut firsatlar arasindan en iyi olani seçmek istiyorum.

   tur <- pisa2015.table(variable="ST119Q02NA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST119Q02NA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST119Q02NA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST119Q02NA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST119Q02NA, dat=ab,mean)

   q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST119Q02NA <- factor(q$ST119Q02NA,
                          levels=c("Strongly disagree","Disagree","Agree","Strongly agree"),
                          labels=c("Tamamen Katilmiyorum","Katilmiyorum",
                                   "Katiliyorum","Tamamen Katiliyorum")
                          )

  q
##              ST119Q02NA Percentage                      tip
## 1  Tamamen Katilmiyorum   3.480000                  Türkiye
## 2          Katilmiyorum   2.340000                  Türkiye
## 3           Katiliyorum  26.470000                  Türkiye
## 4   Tamamen Katiliyorum  67.710000                  Türkiye
## 5  Tamamen Katilmiyorum   1.674857 OECD Ülkeleri Ortalamasi
## 6          Katilmiyorum   5.623143 OECD Ülkeleri Ortalamasi
## 7           Katiliyorum  41.266000 OECD Ülkeleri Ortalamasi
## 8   Tamamen Katiliyorum  51.436000 OECD Ülkeleri Ortalamasi
## 9           Katiliyorum  44.575000   AB Ülkeleri Ortalamasi
## 10         Katilmiyorum   6.409167   AB Ülkeleri Ortalamasi
## 11  Tamamen Katiliyorum  47.219583   AB Ülkeleri Ortalamasi
## 12 Tamamen Katilmiyorum   1.796667   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST119Q02NA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Mezun oldugumda mevcut firsatlar arasindan en iyi olani seçmek istiyorum", 
              x = "", y = "Yüzde",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 14),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 100, ymax = 100)

  plot

## png 
##   2

ST119Q03NA - Her ne yaparsam yapayim en iyi olmak istiyorum

tur <- pisa2015.table(variable="ST119Q03NA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST119Q03NA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST119Q03NA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST119Q03NA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST119Q03NA, dat=ab,mean)

  q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST119Q03NA <- factor(q$ST119Q03NA,
                          levels=c("Strongly disagree","Disagree","Agree","Strongly agree"),
                          labels=c("Tamamen Katilmiyorum","Katilmiyorum",
                                   "Katiliyorum","Tamamen Katiliyorum")
                          )

  q
##              ST119Q03NA Percentage                      tip
## 1  Tamamen Katilmiyorum   3.820000                  Türkiye
## 2          Katilmiyorum  10.710000                  Türkiye
## 3           Katiliyorum  34.350000                  Türkiye
## 4   Tamamen Katiliyorum  51.110000                  Türkiye
## 5  Tamamen Katilmiyorum   6.352571 OECD Ülkeleri Ortalamasi
## 6          Katilmiyorum  28.389143 OECD Ülkeleri Ortalamasi
## 7           Katiliyorum  36.262000 OECD Ülkeleri Ortalamasi
## 8   Tamamen Katiliyorum  28.997143 OECD Ülkeleri Ortalamasi
## 9           Katiliyorum  36.305000   AB Ülkeleri Ortalamasi
## 10         Katilmiyorum  34.439583   AB Ülkeleri Ortalamasi
## 11  Tamamen Katiliyorum  21.610417   AB Ülkeleri Ortalamasi
## 12 Tamamen Katilmiyorum   7.647500   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST119Q03NA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Her ne yaparsam yapayim en iyi olmak istiyorum", 
              x = "", y = "Yüzde",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin =100, ymax =100)

  plot

## png 
##   2

ST119Q04NA - Kendimi hirsli biri olarak görüyorum

tur <- pisa2015.table(variable="ST119Q04NA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST119Q04NA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST119Q04NA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST119Q04NA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST119Q04NA, dat=ab,mean)

  q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST119Q04NA <- factor(q$ST119Q04NA,
                          levels=c("Strongly disagree","Disagree","Agree","Strongly agree"),
                          labels=c("Tamamen Katilmiyorum","Katilmiyorum",
                                   "Katiliyorum","Tamamen Katiliyorum")
                          )

  q
##              ST119Q04NA Percentage                      tip
## 1  Tamamen Katilmiyorum   6.960000                  Türkiye
## 2          Katilmiyorum  20.210000                  Türkiye
## 3           Katiliyorum  40.870000                  Türkiye
## 4   Tamamen Katiliyorum  31.970000                  Türkiye
## 5  Tamamen Katilmiyorum   5.332857 OECD Ülkeleri Ortalamasi
## 6          Katilmiyorum  23.578857 OECD Ülkeleri Ortalamasi
## 7           Katiliyorum  48.583143 OECD Ülkeleri Ortalamasi
## 8   Tamamen Katiliyorum  22.504571 OECD Ülkeleri Ortalamasi
## 9           Katiliyorum  50.738333   AB Ülkeleri Ortalamasi
## 10         Katilmiyorum  24.429167   AB Ülkeleri Ortalamasi
## 11  Tamamen Katiliyorum  19.525417   AB Ülkeleri Ortalamasi
## 12 Tamamen Katilmiyorum   5.307500   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST119Q04NA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Kendimi hirsli biri olarak görüyorum", 
              x = "", y = "Yüzde",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 100, ymax = 100)

  plot

## png 
##   2

ST119Q05NA - Sinifimdaki en iyi ögrencilerden biri olmak istiyorum.

tur <- pisa2015.table(variable="ST119Q05NA",data=pisa_2015_stu_TUR)
   oecd <- pisa2015.table(variable="ST119Q05NA",data=pisa_2015_stu_OECD,by="CNT")
   oecd <- aggregate(Percentage ~ ST119Q05NA, dat=oecd,mean)
   ab <- pisa2015.table(variable="ST119Q05NA",data=pisa_2015_stu_AB,by="CNT")
   ab <- aggregate(Percentage ~ ST119Q05NA, dat=ab,mean)

  q     <- rbind(tur[,c(1,3)],oecd,ab)
   q$tip <- c(rep("Türkiye",4),rep("OECD Ülkeleri Ortalamasi",4),rep("AB Ülkeleri Ortalamasi",4)) 

   q$ST119Q05NA <- factor(q$ST119Q05NA,
                          levels=c("Strongly disagree","Disagree","Agree","Strongly agree"),
                          labels=c("Tamamen Katilmiyorum","Katilmiyorum",
                                   "Katiliyorum","Tamamen Katiliyorum")
                          )

  q
##              ST119Q05NA Percentage                      tip
## 1  Tamamen Katilmiyorum   4.200000                  Türkiye
## 2          Katilmiyorum   6.540000                  Türkiye
## 3           Katiliyorum  35.480000                  Türkiye
## 4   Tamamen Katiliyorum  53.780000                  Türkiye
## 5  Tamamen Katilmiyorum   9.446857 OECD Ülkeleri Ortalamasi
## 6          Katilmiyorum  31.346571 OECD Ülkeleri Ortalamasi
## 7           Katiliyorum  36.174286 OECD Ülkeleri Ortalamasi
## 8   Tamamen Katiliyorum  23.032286 OECD Ülkeleri Ortalamasi
## 9           Katiliyorum  35.286667   AB Ülkeleri Ortalamasi
## 10         Katilmiyorum  36.135000   AB Ülkeleri Ortalamasi
## 11  Tamamen Katiliyorum  17.325833   AB Ülkeleri Ortalamasi
## 12 Tamamen Katilmiyorum  11.252083   AB Ülkeleri Ortalamasi
 plot <- ggplot(q, aes(x=tip, y=Percentage,fill=ST119Q05NA)) +
        geom_bar(stat='identity',position=position_dodge()) + 
        scale_y_continuous(limit = c(0,100))+
        theme_bw()+
        geom_text(aes(y=Percentage,label=scales::percent(q$Percentage/100)), 
                  stat= "identity", position=position_dodge(1),vjust = -1)+
        labs(title ="Sinifimdaki en iyi ögrencilerden biri olmak istiyorum", 
              x = "", y = "Yüzde",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = 100, ymax = 100)

  plot

## png 
##   2

DIGER ULKELERLE KARSILASTIRMA

a <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu,by="CNT")
a <- a[order(a[,3],decreasing=T),]
a <- na.omit(a)
a$Mean2 <- round(a$Mean,2)
a$cnt <- NA

for(i in 1:nrow(a)) {
 cod = substr(unique(pisa_2015_stu[which(pisa_2015_stu$CNT==a[i,1]),]$CNTSCHID)[1],1,3)
 if(length(which(country.code[,2]==as.numeric(cod)))!=0){
  a[i,]$cnt=as.character(country.code[which(country.code[,2]==as.numeric(cod)),1])
  }
}

a[which(a$CNT=="B-S-J-G (China)"),]$cnt="CHN"
a[which(a$CNT=="Belgium"),]$cnt="BEL"
a[which(a$CNT=="Brazil"),]$cnt="BRA"
a[which(a$CNT=="Australia"),]$cnt="IDN"
a[which(a$CNT=="Austria"),]$cnt="AUT"

a <- na.omit(a)
a$rank <- 1:nrow(a)


plot <-  ggplot(a, aes(x=rank, y=Mean2,width=.5)) +
    geom_bar(stat='identity',position=position_dodge(1.5),fill="white",colour="black") + 
    scale_y_continuous(limit = c(-1,1.1))+
    theme_bw()+
    labs(title ="                                                     BASARI MOTIVASYONU", 
          x = "", y = "Standard Puan",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 18),
          legend.text=element_text(size = 12)) +
    geom_text(aes(y=rep(0,55),label=cnt),angle=90,size=4, 
              stat= "identity", position=position_dodge(1),vjust =0.2,hjust=c(rep(1.25,28),rep(-.25,27)))+
    geom_text(aes(y=Mean2,label=Mean2),angle=90, 
              stat= "identity", position=position_dodge(1),vjust =0.2,hjust=c(rep(-.25,28),rep(1.25,27)))+
  annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin = 54, xmax = 54, ymin = .4, ymax = .4)

plot

## png 
##   2

CINSIYET

  tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_TUR,by="ST004D01T")

   oecd <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_OECD,by=c("CNT","ST004D01T"))
   oecd <- aggregate(Mean ~ ST004D01T, data=oecd,mean)

   ab <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_AB,by=c("CNT","ST004D01T"))
   ab <- aggregate(Mean ~ ST004D01T,data=ab,mean)

   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",2),rep("OECD Ülkeleri Ortalamasi",2),rep("AB Ülkeleri Ortalamasi",2)) 

   q[3:4,]$Mean <- oecd$Mean
   q[3:4,]$s.e. <- 0
   q[5:6,]$Mean <- ab$Mean
   q[5:6,]$s.e. <- 0

   q$ST004D01T <- factor(q$ST004D01T,levels=c("Female","Male"),labels=c("Kiz","Erkek"))
   q$Mean2 <- round(q$Mean,2)
  q
##   ST004D01T Freq         Mean s.e.   SD  s.e                      tip
## 1       Kiz 2914  0.710000000 0.02 0.97 0.02                  Türkiye
## 2     Erkek 2893  0.530000000 0.03 1.06 0.02                  Türkiye
## 3       Kiz 2914 -0.001714286 0.00 0.97 0.02 OECD Ülkeleri Ortalamasi
## 4     Erkek 2893 -0.012285714 0.00 1.06 0.02 OECD Ülkeleri Ortalamasi
## 5       Kiz 2914 -0.185000000 0.00 0.97 0.02   AB Ülkeleri Ortalamasi
## 6     Erkek 2893 -0.187500000 0.00 1.06 0.02   AB Ülkeleri Ortalamasi
##   Mean2
## 1  0.71
## 2  0.53
## 3  0.00
## 4 -0.01
## 5 -0.18
## 6 -0.19
 plot <- ggplot(q, aes(x=tip, y=Mean,fill=ST004D01T)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,0,0,0,0))+
         scale_y_continuous(limit = c(-.8,.8))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(0.5),
                  vjust = c(1.1,1.1,-.6,-.6,-.6,-.6),
                  hjust = c(.4,0.6,0,0,-.7,.4),
                  size = 5)+
        labs(title ="Cinsiyete Gore Basari Motivasyonu", 
              x = "", y = "Basari Motivasyonu Puani",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = .8, ymax = .8)

  plot

## png 
##   2

Cografi Bolgeler

  tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_TUR,by="bolge")
   tur <- tur[order(tur[,3]),]
   tur[,1] <- factor(tur[,1],levels=tur[,1],labels=tur[,1])

 plot <- ggplot(tur, aes(x=bolge, y=Mean)) +
         geom_bar(stat='identity',position=position_dodge(),width=.7,fill="bisque2") + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(.2),
                       lty=2,
                       colour="gray50",
                       width=0.05)+
        theme_bw()+
        geom_text(aes(y=Mean,label=Mean), 
                  stat= "identity", position=position_dodge(.2),
                  hjust=1.2,vjust = -.6,size = 5) +
     labs(title = "                       COGRAFI BOLGE VE BASARI MOTIVASYONU", 
          x = "COGRAFI BOLGE", y = "BASARI MOTIVASYONU PUANI",
          shape=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          axis.text.x = element_text(angle = 90, hjust = 1,size=13),
          title = element_text(size = 20),
          legend.justification=c(-0.5,-0.2),
          legend.position=c(0,0),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =1, xmax = 1, ymin = 0.95, ymax = 0.95)

  plot

## png 
##   2

SINIF DUZEYI

  tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_TUR,by="ST001D01T")
  tur <- tur[2:4,]
  
  tur
##   ST001D01T Freq Mean s.e.   SD  s.e
## 2   Grade 8   96 0.27 0.18 1.10 0.11
## 3   Grade 9 1246 0.46 0.04 1.11 0.03
## 4  Grade 10 4258 0.68 0.02 0.98 0.02
   oecd <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_OECD,by=c("CNT","ST001D01T"))
   oecd <- aggregate(Mean ~ ST001D01T, data=oecd,mean)
   oecd <- oecd[2:4,]
   oecd
##   ST001D01T       Mean
## 2   Grade 8 -0.1558621
## 3   Grade 9 -0.0187500
## 4  Grade 10  0.0220000
   ab <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_AB,by=c("CNT","ST001D01T"))
   ab <- aggregate(Mean ~ ST001D01T,data=ab,mean)
   ab<- ab[2:4,]
   ab
##   ST001D01T       Mean
## 2   Grade 8 -0.2866667
## 3   Grade 9 -0.2158333
## 4  Grade 10 -0.1429167
   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",3),rep("OECD Ülkeleri Ortalamasi",3),rep("AB Ülkeleri Ortalamasi",3)) 

   q[4:6,]$Mean <- oecd$Mean
   q[4:6,]$s.e. <- 0
   q[7:9,]$Mean <- ab$Mean
   q[7:9,]$s.e. <- 0

   q$Mean2 <- round(q$Mean,2)
  
   q$ST001D01T <- factor(q$ST001D01T,
                            levels=c("Grade 8","Grade 9","Grade 10"),
                            labels=c("8. Sinif","9. Sinif","10. Sinif"))
 
   q
##    ST001D01T Freq       Mean s.e.   SD  s.e                      tip Mean2
## 2   8. Sinif   96  0.2700000 0.18 1.10 0.11                  Türkiye  0.27
## 3   9. Sinif 1246  0.4600000 0.04 1.11 0.03                  Türkiye  0.46
## 4  10. Sinif 4258  0.6800000 0.02 0.98 0.02                  Türkiye  0.68
## 21  8. Sinif   96 -0.1558621 0.00 1.10 0.11 OECD Ülkeleri Ortalamasi -0.16
## 31  9. Sinif 1246 -0.0187500 0.00 1.11 0.03 OECD Ülkeleri Ortalamasi -0.02
## 41 10. Sinif 4258  0.0220000 0.00 0.98 0.02 OECD Ülkeleri Ortalamasi  0.02
## 22  8. Sinif   96 -0.2866667 0.00 1.10 0.11   AB Ülkeleri Ortalamasi -0.29
## 32  9. Sinif 1246 -0.2158333 0.00 1.11 0.03   AB Ülkeleri Ortalamasi -0.22
## 42 10. Sinif 4258 -0.1429167 0.00 0.98 0.02   AB Ülkeleri Ortalamasi -0.14
 plot <- ggplot(q, aes(x=tip, y=Mean,fill=ST001D01T)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,.05,0,0,0,0,0,0))+
         scale_y_continuous(limit = c(-.4,.8))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(.8),
                  vjust = c(1.2,1.2,1.2,1.5,1.2,1.2,-.3,-.3,-.3),
                  hjust = c(.6,.6,.6,.6,.6,.6,1.2,1.2,1.2),
                  size = 6)+
        labs(title = "                       SINIF DUZEYI VE BASARI MOTIVASYONU", 
          x = "", y = "BASARI MOTIVASYONU PUANI",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =0.7, xmax = 0.7, ymin = 0.8, ymax = 0.8) 

  plot

## png 
##   2

Okul Tipi

   pisa_2015_TUR$tur <- ifelse(pisa_2015_TUR$SCHLTYPE=="Private Independent" | 
                               pisa_2015_TUR$SCHLTYPE=="Private Government-dependent",1,0)

   tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_TUR,by="tur")
   tur <- tur[1:2,]

   pisa_2015_OECD$tur <- ifelse(pisa_2015_OECD$SCHLTYPE=="Private Independent" | 
                                pisa_2015_OECD$SCHLTYPE=="Private Government-dependent",1,0)

   oecd <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_OECD,by=c("CNT","tur"))
   oecd <- aggregate(Mean ~ tur, data=oecd,mean)

   pisa_2015_AB$tur <- ifelse(pisa_2015_AB$SCHLTYPE=="Private Independent" | 
                              pisa_2015_AB$SCHLTYPE=="Private Government-dependent",1,0)

   ab <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_AB,by=c("CNT","tur"))
   ab <- aggregate(Mean ~ tur, data=ab,mean)

   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",2),rep("OECD Ülkeleri Ortalamasi",2),rep("AB Ülkeleri Ortalamasi",2)) 

   q[3:4,]$Mean <- oecd$Mean
   q[3:4,]$s.e. <- 0
   q[5:6,]$Mean <- ab$Mean
   q[5:6,]$s.e. <- 0

   q$tur <- factor(q$tur,levels=c(0,1),labels=c("Devlet Okulu","Ozel Okul"))
 
   q$Mean2 <- round(q$Mean,2)
   q
##            tur Freq        Mean s.e.   SD  s.e                      tip
## 1 Devlet Okulu 5534  0.63000000 0.02 1.01 0.01                  Türkiye
## 2    Ozel Okul  240  0.44000000 0.10 1.19 0.09                  Türkiye
## 3 Devlet Okulu 5534 -0.03764706 0.00 1.01 0.01 OECD Ülkeleri Ortalamasi
## 4    Ozel Okul  240  0.02205882 0.00 1.19 0.09 OECD Ülkeleri Ortalamasi
## 5 Devlet Okulu 5534 -0.18416667 0.00 1.01 0.01   AB Ülkeleri Ortalamasi
## 6    Ozel Okul  240 -0.10541667 0.00 1.19 0.09   AB Ülkeleri Ortalamasi
##   Mean2
## 1  0.63
## 2  0.44
## 3 -0.04
## 4  0.02
## 5 -0.18
## 6 -0.11
 plot <- ggplot(q, aes(x=tip, y=Mean,fill=tur)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,0,0,0,0))+
         scale_y_continuous(limit = c(-.3,.8))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(1),
                  vjust = c(1.2,1.2,1.8,1.2,-.3,-.3),
                  hjust = c(.6,.6,.6,.6,1.5,1.2),
                  size = 6)+
        labs(title ="Okul Turune Gore BASARI MOTIVASYONU Puani", 
              x = "", y = "BASARI MOTIVASYONU Puani",
              fill=" ")+
        theme(axis.title= element_text(size = 20),      
              axis.text= element_text(size = 12),
              title = element_text(size = 18),
              legend.text=element_text(size = 12)) +
        annotation_custom(grob = textGrob("@pisa_turkiye"),  
              xmin = 3.3, xmax = 3.3, ymin = .8, ymax = .8)

  plot

## png 
##   2

Sosyo-ekonomik kulturel statu

  pisa_2015_stu_TUR$ESCS_cat <- factor(recode(pisa_2015_stu_TUR$ESCS,
                                              recodes="lo:-1='Dusuk (ESCS < -1)';
                                                      -1:0='Orta (-1 < ESCS < 0)';
                                                      0:hi='Yuksek(ESCS>0)'"))
   tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_TUR,by="ESCS_cat")
   tur <- tur[1:3,] 
   tur
##               ESCS_cat Freq Mean s.e.   SD  s.e
## 1    Dusuk (ESCS < -1) 3790 0.58 0.03 1.03 0.02
## 2 Orta (-1 < ESCS < 0) 1269 0.66 0.04 1.04 0.03
## 3       Yuksek(ESCS>0)  747 0.74 0.04 0.96 0.03
  pisa_2015_stu_OECD$ESCS_cat <- factor(recode(pisa_2015_stu_OECD$ESCS,
                                              recodes="lo:-1='Dusuk (ESCS < -1)';
                                                      -1:0='Orta (-1 < ESCS < 0)';
                                                      0:hi='Yuksek(ESCS>0)'"))
   oecd <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_OECD,by=c("CNT","ESCS_cat"))
   oecd <- aggregate(Mean ~ ESCS_cat, data=oecd,mean)

  pisa_2015_stu_AB$ESCS_cat <- factor(recode(pisa_2015_stu_AB$ESCS,
                                              recodes="lo:-1='Dusuk (ESCS < -1)';
                                                      -1:0='Orta (-1 < ESCS < 0)';
                                                      0:hi='Yuksek(ESCS>0)'"))
   ab <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_AB,by=c("CNT","ESCS_cat"))
   ab <- aggregate(Mean ~ ESCS_cat, data=ab,mean)


   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",3),rep("OECD Ülkeleri Ortalamasi",3),rep("AB Ülkeleri Ortalamasi",3)) 

   q[4:6,]$Mean <- oecd$Mean
   q[4:6,]$s.e. <- 0
   q[7:9,]$Mean <- ab$Mean
   q[7:9,]$s.e. <- 0

   q$Mean2 <- round(q$Mean,2)
  
   q
##               ESCS_cat Freq        Mean s.e.   SD  s.e
## 1    Dusuk (ESCS < -1) 3790  0.58000000 0.03 1.03 0.02
## 2 Orta (-1 < ESCS < 0) 1269  0.66000000 0.04 1.04 0.03
## 3       Yuksek(ESCS>0)  747  0.74000000 0.04 0.96 0.03
## 4    Dusuk (ESCS < -1) 3790 -0.18371429 0.00 1.03 0.02
## 5 Orta (-1 < ESCS < 0) 1269 -0.09314286 0.00 1.04 0.03
## 6       Yuksek(ESCS>0)  747  0.09828571 0.00 0.96 0.03
## 7    Dusuk (ESCS < -1) 3790 -0.35166667 0.00 1.03 0.02
## 8 Orta (-1 < ESCS < 0) 1269 -0.26208333 0.00 1.04 0.03
## 9       Yuksek(ESCS>0)  747 -0.07625000 0.00 0.96 0.03
##                        tip Mean2
## 1                  Türkiye  0.58
## 2                  Türkiye  0.66
## 3                  Türkiye  0.74
## 4 OECD Ülkeleri Ortalamasi -0.18
## 5 OECD Ülkeleri Ortalamasi -0.09
## 6 OECD Ülkeleri Ortalamasi  0.10
## 7   AB Ülkeleri Ortalamasi -0.35
## 8   AB Ülkeleri Ortalamasi -0.26
## 9   AB Ülkeleri Ortalamasi -0.08
 plot <- ggplot(q, aes(x=tip, y=Mean,fill=ESCS_cat)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,.05,0,0,0,0,0,0))+
         scale_y_continuous(limit = c(-.5,.9))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(.8),
                  vjust = c(1.2,1.2,1.2,-.6,1.2,1.2,-.3,-.3,-.3),
                  hjust = c(.6,.6,.6,.6,.6,.6,1.2,1.2,1.2),
                  size = 5) +
        labs(title = "SOSYO-EKONOMIK STATU VE BASARI MOTIVASYONU", 
          x = "", y = "BASARI MOTIVASYONU PUANI",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =0.7, xmax = 0.7, ymin = 0.9, ymax = 0.9)
  plot

## png 
##   2

Okul Turu

  tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_TUR,by="PROGN")
    tur$PROGN <- as.character(tur$PROGN)
    tur$PROGN<- factor(tur$PROGN,
                            levels=c("Turkey: Basic Education","Turkey: Vocational and Technical Secondary Education",
                                     "Turkey: General Secondary Education"),
                            labels=c("Ortaogretim","Mesleki ve Teknik Lise","Genel Lise"))
 
  tur
##                    PROGN Freq Mean s.e.   SD  s.e
## 1            Ortaogretim  112 0.16 0.16 1.12 0.10
## 2             Genel Lise 3206 0.68 0.02 0.98 0.02
## 3 Mesleki ve Teknik Lise 2489 0.56 0.03 1.05 0.03
  plot <- ggplot(tur, aes(x=PROGN, y=Mean)) +
         geom_bar(stat='identity',position=position_dodge(),width=.7,fill="bisque2") + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(.2),
                       lty=2,
                       colour="gray50",
                       width=0.05)+
        theme_bw()+
        geom_text(aes(y=Mean,label=Mean), 
                  stat= "identity", position=position_dodge(.2),
                  hjust=1.2,vjust = -.6,size = 5) +
     labs(title = "Okul Turune Gore BASARI MOTIVASYONU Puani", 
          x = "", y = "BASARI MOTIVASYONU PUANI",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =3.3, xmax = 3.3, ymin = -0.15, ymax = -0.15)

  plot

## png 
##   2

Okul Oncesi Egitim

 pisa_2015_stu_TUR$durecec <- NA

    pisa_2015_stu_TUR[which(pisa_2015_stu_TUR$ST125Q01NA=="I did not attend <ISCED 0>"),]$durecec <- 0
    pisa_2015_stu_TUR[which(pisa_2015_stu_TUR$ST125Q01NA=="1 year or younger" |
                            pisa_2015_stu_TUR$ST125Q01NA=="2 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="3 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="4 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="5 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="6 years or older"),]$durecec <- 1



 pisa_2015_stu_OECD$durecec <- NA

    pisa_2015_stu_OECD[which(pisa_2015_stu_OECD$ST125Q01NA=="I did not attend <ISCED 0>"),]$durecec <- 0
    pisa_2015_stu_OECD[which(pisa_2015_stu_OECD$ST125Q01NA=="1 year or younger" |
                            pisa_2015_stu_OECD$ST125Q01NA=="2 years" |
                            pisa_2015_stu_OECD$ST125Q01NA=="3 years" |
                            pisa_2015_stu_OECD$ST125Q01NA=="4 years" |
                            pisa_2015_stu_OECD$ST125Q01NA=="5 years" |
                            pisa_2015_stu_OECD$ST125Q01NA=="6 years or older"),]$durecec <- 1


 pisa_2015_stu_AB$durecec <- NA

    pisa_2015_stu_AB[which(pisa_2015_stu_AB$ST125Q01NA=="I did not attend <ISCED 0>"),]$durecec <- 0
    pisa_2015_stu_AB[which(pisa_2015_stu_AB$ST125Q01NA=="1 year or younger" |
                            pisa_2015_stu_AB$ST125Q01NA=="2 years" |
                            pisa_2015_stu_AB$ST125Q01NA=="3 years" |
                            pisa_2015_stu_AB$ST125Q01NA=="4 years" |
                            pisa_2015_stu_AB$ST125Q01NA=="5 years" |
                            pisa_2015_stu_AB$ST125Q01NA=="6 years or older"),]$durecec <- 1


  tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_TUR,by="durecec")
  tur <- tur[1:2,]

  oecd <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_OECD,by=c("CNT","durecec"))
   oecd <- aggregate(Mean ~ durecec, data=oecd,mean)

  ab <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_AB,by=c("CNT","durecec"))
   ab <- aggregate(Mean ~ durecec, data=ab,mean)

   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",2),rep("OECD Ülkeleri Ortalamasi",2),rep("AB Ülkeleri Ortalamasi",2)) 

   q[3:4,]$Mean <- oecd$Mean
   q[3:4,]$s.e. <- 0
   q[5:6,]$Mean <- ab$Mean
   q[5:6,]$s.e. <- 0

   q$Mean2 <- round(q$Mean,2)
  
   q
##   durecec Freq        Mean s.e.   SD  s.e                      tip Mean2
## 1       0 2605  0.65000000 0.03 0.99 0.02                  Türkiye  0.65
## 2       1 2644  0.63000000 0.02 1.04 0.02                  Türkiye  0.63
## 3       0 2605 -0.05147059 0.00 0.99 0.02 OECD Ülkeleri Ortalamasi -0.05
## 4       1 2644  0.02588235 0.00 1.04 0.02 OECD Ülkeleri Ortalamasi  0.03
## 5       0 2605 -0.19869565 0.00 0.99 0.02   AB Ülkeleri Ortalamasi -0.20
## 6       1 2644 -0.15782609 0.00 1.04 0.02   AB Ülkeleri Ortalamasi -0.16
    q$durecec <- factor(q$durecec,levels=c(0,1),labels=c("HAYIR","EVET"))
 

  plot <- ggplot(q, aes(x=tip, y=Mean,fill=durecec)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,0,0,0,0))+
         scale_y_continuous(limit = c(-.3,.8))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(.8),
                  hjust =c(0.4,.4,.4,.4,-0.1,-0.1),
                  vjust =c(1.2,1.2,2.5,1.2,-.2,-.2),size = 5) +
        labs(title = "OKUL ONCESI EGITIM VE BASARI MOTIVASYONU", 
          x = "", y = "BASARI MOTIVASYONU PUANI",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =3.2, xmax = 3.2, ymin = 0.5, ymax = 0.5)
  plot

## png 
##   2

Sinif Tekrari

  tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_TUR,by="REPEAT")
  tur <- tur[1:2,]

  oecd <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_OECD,by=c("CNT","REPEAT"))
   oecd <- aggregate(Mean ~ REPEAT, data=oecd,mean)

  ab <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_stu_AB,by=c("CNT","REPEAT"))
   ab <- aggregate(Mean ~ REPEAT, data=ab,mean)

   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",2),rep("OECD Ülkeleri Ortalamasi",2),rep("AB Ülkeleri Ortalamasi",2)) 

   q[3:4,]$Mean <- oecd$Mean
   q[3:4,]$s.e. <- 0
   q[5:6,]$Mean <- ab$Mean
   q[5:6,]$s.e. <- 0

   q$Mean2 <- round(q$Mean,2)
  
   q
##                     REPEAT Freq        Mean s.e.   SD  s.e
## 1 Did not repeat a <grade> 5191  0.65000000 0.02 1.01 0.02
## 2       Repeated a <grade>  613  0.33000000 0.05 1.13 0.04
## 3 Did not repeat a <grade> 5191  0.02727273 0.00 1.01 0.02
## 4       Repeated a <grade>  613 -0.19787879 0.00 1.13 0.04
## 5 Did not repeat a <grade> 5191 -0.16416667 0.00 1.01 0.02
## 6       Repeated a <grade>  613 -0.38916667 0.00 1.13 0.04
##                        tip Mean2
## 1                  Türkiye  0.65
## 2                  Türkiye  0.33
## 3 OECD Ülkeleri Ortalamasi  0.03
## 4 OECD Ülkeleri Ortalamasi -0.20
## 5   AB Ülkeleri Ortalamasi -0.16
## 6   AB Ülkeleri Ortalamasi -0.39
    q$REPEAT<- factor(q$REPEAT,levels=c("Did not repeat a <grade>",
                                           "Repeated a <grade>"),
                        labels=c("HAYIR","EVET"))
 

  plot <- ggplot(q, aes(x=tip, y=Mean,fill=REPEAT)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,0,0,0,0))+
         scale_y_continuous(limit = c(-.5,.8))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(.8),
                  hjust =c(0.4,.4,.4,.4,-0.1,-0.1),
                  vjust =c(2,1.4,2,2,-.3,-.3),size = 5) +
        labs(title = "SINIF TEKRARI VE BASARI MOTIVASYONU", 
          x = "", y = "BASARI MOTIVASYONU PUANI",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =0.7, xmax = 0.7, ymin = 0.8, ymax = 0.8)
  plot

## png 
##   2

Okulun bulundugu yerin nufusu

  tur <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_TUR,by="SC001Q01TA")
  tur <- tur[1:5,]

  oecd <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_OECD,by=c("CNT","SC001Q01TA"))
   oecd <- aggregate(Mean ~ SC001Q01TA, data=oecd,mean)

  ab <- pisa2015.mean(variable="MOTIVAT",data=pisa_2015_AB,by=c("CNT","SC001Q01TA"))
   ab <- aggregate(Mean ~ SC001Q01TA, data=ab,mean)

   q     <- rbind(tur,tur,tur)
   q$tip <- c(rep("Türkiye",5),rep("OECD Ülkeleri Ortalamasi",5),rep("AB Ülkeleri Ortalamasi",5)) 

   q[6:10,]$Mean <- oecd$Mean
   q[6:10,]$s.e. <- 0
   q[11:15,]$Mean <- ab$Mean
   q[11:15,]$s.e. <- 0

   q$Mean2 <- round(q$Mean,2)
  
   q
##                                                   SC001Q01TA Freq
## 1  A village, hamlet or rural area (fewer than 3 000 people)   37
## 2                A small town (3 000 to about 15 000 people)  364
## 3                    A town (15 000 to about 100 000 people) 1747
## 4                 A city (100 000 to about 1 000 000 people) 1264
## 5                  A large city (with over 1 000 000 people) 2362
## 6  A village, hamlet or rural area (fewer than 3 000 people)   37
## 7                A small town (3 000 to about 15 000 people)  364
## 8                    A town (15 000 to about 100 000 people) 1747
## 9                 A city (100 000 to about 1 000 000 people) 1264
## 10                 A large city (with over 1 000 000 people) 2362
## 11 A village, hamlet or rural area (fewer than 3 000 people)   37
## 12               A small town (3 000 to about 15 000 people)  364
## 13                   A town (15 000 to about 100 000 people) 1747
## 14                A city (100 000 to about 1 000 000 people) 1264
## 15                 A large city (with over 1 000 000 people) 2362
##           Mean s.e.   SD  s.e                      tip Mean2
## 1  -0.17000000 0.17 1.13 0.05                  Türkiye -0.17
## 2   0.58000000 0.15 1.08 0.07                  Türkiye  0.58
## 3   0.61000000 0.03 1.01 0.03                  Türkiye  0.61
## 4   0.61000000 0.04 0.99 0.03                  Türkiye  0.61
## 5   0.66000000 0.03 1.02 0.03                  Türkiye  0.66
## 6  -0.14090909 0.00 1.13 0.05 OECD Ülkeleri Ortalamasi -0.14
## 7  -0.06088235 0.00 1.08 0.07 OECD Ülkeleri Ortalamasi -0.06
## 8  -0.01500000 0.00 1.01 0.03 OECD Ülkeleri Ortalamasi -0.02
## 9   0.03617647 0.00 0.99 0.03 OECD Ülkeleri Ortalamasi  0.04
## 10  0.12652174 0.00 1.02 0.03 OECD Ülkeleri Ortalamasi  0.13
## 11 -0.29818182 0.00 1.13 0.05   AB Ülkeleri Ortalamasi -0.30
## 12 -0.24043478 0.00 1.08 0.07   AB Ülkeleri Ortalamasi -0.24
## 13 -0.19434783 0.00 1.01 0.03   AB Ülkeleri Ortalamasi -0.19
## 14 -0.14304348 0.00 0.99 0.03   AB Ülkeleri Ortalamasi -0.14
## 15 -0.07000000 0.00 1.02 0.03   AB Ülkeleri Ortalamasi -0.07
    q$SC001Q01TA<- factor(q$SC001Q01TA,levels=c("A village, hamlet or rural area (fewer than 3 000 people)",
                                                "A small town (3 000 to about 15 000 people)",
                                                "A town (15 000 to about 100 000 people)",
                                                "A city (100 000 to about 1 000 000 people)",
                                                "A large city (with over 1 000 000 people)"),
                        labels=c("Koy",
                                 "Kucuk Kasaba",
                                 "Kasaba",
                                 "Sehir",
                                 "Buyuk Sehir")
                        )
 

  plot <- ggplot(q, aes(x=tip, y=Mean,fill=SC001Q01TA)) +
         geom_bar(stat='identity',position=position_dodge(),width=.75) + 
         geom_errorbar(aes(ymin=Mean-1.96*s.e., ymax=Mean+1.96*s.e.),
                       position = position_dodge(0.8),
                       lty=2,
                       colour="gray50",
                       width=c(.05,.05,.05,.05,.05,0,0,0,0,0,0,0,0,0,0))+
         scale_y_continuous(limit = c(-.6,.9))+
        theme_bw()+
        geom_text(aes(y=Mean2,label=Mean2), 
                  stat= "identity", position=position_dodge(.8),
                  hjust =c(.4,.4,.4,.4,.4,.4,.4,.4,.4,.4,-0.2,-0.2,-.2,-.2,-.2),
                  vjust =c(-.5,1.2,1.2,1.2,1.2,-.5,-.6,1.4,1.4,1.6,-0.3,-0.3,-.3,-.3,1.2),
                  size = 4) +
        labs(title = "YERLESIM YERI NUFUSU VE BASARI MOTIVASYONU", 
          x = "", y = "BASARI MOTIVASYONU PUANI",
          fill=" ")+
    theme(axis.title= element_text(size = 20),      
          axis.text= element_text(size = 12),
          title = element_text(size = 20),
          legend.text=element_text(size = 12)   
          ) +
     annotation_custom(grob = textGrob("@pisa_turkiye"),  
        xmin =0.7, xmax = 0.7, ymin = 0.9, ymax = 0.9)
  plot

## png 
##   2