Before the project start
what did I do?
And what will happen?
December 26, 2016
Before the project start
what did I do?
And what will happen?
There are two main parts in this project
Continuous Data
Categorical Data
This dataset contains 2042 observers with 27 variables
Individual information: COMPID & SUB
Individual Scores from each question of three different different scales
Mean Scores of individual's each scale
Mean Scores of individual's each scale Aggregated by company
## Linear mixed model fit by REML ['lmerMod'] ## Formula: Score ~ Type - 1 + (1 | COMPID) + (1 | COMPID:SUB) ## Data: dta2L ## ## REML criterion at convergence: 15926.5 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.4461 -0.5144 0.1037 0.6007 2.8497 ## ## Random effects: ## Groups Name Variance Std.Dev. ## COMPID:SUB (Intercept) 0.32419 0.5694 ## COMPID (Intercept) 0.05413 0.2327 ## Residual 0.55410 0.7444 ## Number of obs: 6126, groups: COMPID:SUB, 2042; COMPID, 49 ## ## Fixed effects: ## Estimate Std. Error t value ## TypeLEAD 3.04488 0.04059 75.01 ## TypeRHOSTILE 4.09716 0.04059 100.94 ## TypeTSIG 3.17721 0.04059 78.27 ## ## Correlation of Fixed Effects: ## TyLEAD TRHOST ## TypRHOSTILE 0.835 ## TypeTSIG 0.835 0.835
## Linear mixed model fit by REML ['lmerMod'] ## Formula: Score ~ (1 | Type) + (1 | COMPID) + (1 | COMPID:SUB) ## Data: dta2L ## ## REML criterion at convergence: 15931.1 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -3.4454 -0.5147 0.1039 0.6003 2.8494 ## ## Random effects: ## Groups Name Variance Std.Dev. ## COMPID:SUB (Intercept) 0.32419 0.5694 ## COMPID (Intercept) 0.05413 0.2327 ## Type (Intercept) 0.32822 0.5729 ## Residual 0.55410 0.7444 ## Number of obs: 6126, groups: COMPID:SUB, 2042; COMPID, 49; Type, 3 ## ## Fixed effects: ## Estimate Std. Error t value ## (Intercept) 3.440 0.333 10.33
## [[1]] ## Linear mixed model ## Family: gaussian (identity) ## Formula: Score ~ Type - 1 + (1 | COMPID) + (1 | COMPID:SUB) ## ## ICC (COMPID:SUB): 0.347688 ## ICC (COMPID): 0.058051 ## ## [[2]] ## Linear mixed model ## Family: gaussian (identity) ## Formula: Score ~ (1 | Type) + (1 | COMPID) + (1 | COMPID:SUB) ## ## ICC (COMPID:SUB): 0.257164 ## ICC (COMPID): 0.042937 ## ICC (Type): 0.260360
## Call: ICC(x = dta2[, c(3, 4, 5)]) ## ## Intraclass correlation coefficients ## type ICC F df1 df2 p lower bound upper bound ## Single_raters_absolute ICC1 0.23 1.9 2041 4084 0 0.20 0.26 ## Single_random_raters ICC2 0.30 3.0 2041 4082 0 0.13 0.44 ## Single_fixed_raters ICC3 0.40 3.0 2041 4082 0 0.38 0.43 ## Average_raters_absolute ICC1k 0.47 1.9 2041 4084 0 0.43 0.51 ## Average_random_raters ICC2k 0.56 3.0 2041 4082 0 0.31 0.70 ## Average_fixed_raters ICC3k 0.67 3.0 2041 4082 0 0.64 0.69 ## ## Number of subjects = 2042 Number of Judges = 3
This dataset contains 434 observers with 100 variables
Individual information: ID, SEX, Class, Age
Individual Response from each question of three different different
Three different scales are :Anxiety Sensitivity Index & Anxiety Sensitivity Profile & State Trait Anxiety Inventory Trait Version
## Fleiss' Kappa for m Raters ## ## Subjects = 242 ## Raters = 12 ## Kappa = 0.138 ## ## z = 32.7 ## p-value = 0
This dataset contains 30 observers with 6 variables
30 subject
6 raters
5 levels:Depression, Personality Disorder, Schizophrenia, Neurosis, Other
## Fleiss' Kappa for m Raters ## ## Subjects = 30 ## Raters = 6 ## Kappa = 0.43 ## ## z = 17.7 ## p-value = 0
The results from multilevel approach are similar to ICC caculated from data
Multilevel approaches can give us more information
But multilevel approaches are more complicated and may need more data to get the results