20161112_PH_HUSS.cnv 파일 분석..

[Data Structure]

str(data1)
'data.frame':   60320 obs. of  12 variables:
 $ j2dt     : POSIXct, format: "2016-11-12 09:30:49" "2016-11-12 09:31:00" "2016-11-12 09:31:10" "2016-11-12 09:31:19" ...
 $ lat      : num  35 35 35 35 35 ...
 $ long     : num  129 129 129 129 129 ...
 $ pressure : int  0 0 0 0 0 0 0 0 0 0 ...
 $ temp     : num  18.1 18.1 18.1 18.1 18 ...
 $ salinity : num  29.7 29.8 29.8 29.8 29.8 ...
 $ density1 : num  21.3 21.3 21.3 21.3 21.3 ...
 $ density2 : num  21.3 21.3 21.3 21.3 21.3 ...
 $ soundv   : num  1509 1509 1509 1509 1509 ...
 $ flag     : num  0 0 0 0 0 0 0 0 0 0 ...
 $ temp_flag: logi  NA NA NA NA NA NA ...
 $ sal_flag : logi  NA NA NA NA NA NA ...

[Data summary]

summary(data1)
      j2dt                          lat             long          pressure      temp          salinity        density1         density2     
 Min.   :2016-11-12 09:30:50   Min.   :34.99   Min.   :128.9   Min.   :0   Min.   :15.79   Min.   :10.14   Min.   : 6.304   Min.   : 6.304  
 1st Qu.:2016-11-14 03:24:07   1st Qu.:36.05   1st Qu.:129.4   1st Qu.:0   1st Qu.:16.25   1st Qu.:31.90   1st Qu.:23.032   1st Qu.:23.032  
 Median :2016-11-15 21:17:25   Median :36.05   Median :129.4   Median :0   Median :16.80   Median :32.14   Median :23.395   Median :23.395  
 Mean   :2016-11-15 21:17:25   Mean   :36.09   Mean   :129.5   Mean   :0   Mean   :17.64   Mean   :31.78   Mean   :22.918   Mean   :22.918  
 3rd Qu.:2016-11-17 15:10:42   3rd Qu.:36.19   3rd Qu.:129.7   3rd Qu.:0   3rd Qu.:18.76   3rd Qu.:32.53   3rd Qu.:23.609   3rd Qu.:23.609  
 Max.   :2016-11-19 09:04:00   Max.   :36.49   Max.   :130.0   Max.   :0   Max.   :22.02   Max.   :34.84   Max.   :25.214   Max.   :25.214  
     soundv          flag   temp_flag        sal_flag      
 Min.   :1488   Min.   :0   Mode :logical   Mode :logical  
 1st Qu.:1507   1st Qu.:0   FALSE:60070     FALSE:59477    
 Median :1508   Median :0   TRUE :219       TRUE :812      
 Mean   :1511   Mean   :0   NA's :31        NA's :31       
 3rd Qu.:1514   3rd Qu.:0                                  
 Max.   :1523   Max.   :0                                  

Moving IQR TEST Result..(Windows size= 31, 중앙값 16번째 값 좌우로 15개씩 총 31개 단위데이터 이용) 따라서 1~15행, 마지막행-15행까지의 데이터는 버려짐.

[Temperature’s M-IQR 검출결과]

cat("Temperature ->>", "Outliers(M-IQR) :", nrow(temp_Outliers), " , ", "Passed :", nrow(temp_Passed))
Temperature ->> Outliers(M-IQR) : 219  ,  Passed : 60070

[Temperature’s 시각화 체크]

boxplot(data1$temp, col="lightgrey", horizontal = T, xlab="째C", ylab="", main="temperature")

hist(data1$temp, col="lightcyan", breaks = 100, probability = TRUE, xlab="째C")

[Temperature’s Dynamic Plotting]

p<-ggplot(data1, aes(x=j2dt, y=temp, col=temp_flag)) +  geom_point(size=1) +
  scale_color_manual(values=c("black", "red")) + ggtitle("temperature Plot")
ggplotly(p)

[Salinity’s M-IQR 검출결과]

cat("Salinity ->>", "Outliers(M-IQR) :", nrow(salinity_Outliers), " , ", "Passed :", nrow(salinity_Passed))
Salinity ->> Outliers(M-IQR) : 812  ,  Passed : 59477

[Salinity’s 시각화 체크]

boxplot(data1$salinity, col="lightgrey", horizontal = T, xlab="", ylab="", main="Salinity")

hist(data1$salinity, col="lightcyan", breaks = 100, probability = TRUE, xlab="")

[Salinity’s Dynamic Plotting]

p<-ggplot(data1, aes(x=j2dt, y=salinity, col=sal_flag)) +  geom_point(size=1) +
  scale_color_manual(values=c("black", "red")) + ggtitle("Salinity Plot")
ggplotly(p)
LS0tCnRpdGxlOiAiTW92aW5nIElRUiBUZXN0IGZvciBUU0cgZGF0YSIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OiBkZWZhdWx0CiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0CiAgd29yZF9kb2N1bWVudDogZGVmYXVsdAotLS0KIyMjIDIwMTYxMTEyX1BIX0hVU1MuY252IO2MjOydvCDrtoTshJ0uLgpbRGF0YSBTdHJ1Y3R1cmVdCmBgYHtyfQpzdHIoZGF0YTEpCmBgYAoKW0RhdGEgc3VtbWFyeV0KYGBge3J9CnN1bW1hcnkoZGF0YTEpCmBgYAoKTW92aW5nIElRUiBURVNUIFJlc3VsdC4uKFdpbmRvd3Mgc2l6ZT0gMzEsIOykkeyVmeqwkiAxNuuyiOynuCDqsJIg7KKM7Jqw66GcIDE16rCc7JSpIOy0nSAzMeqwnCDri6jsnITrjbDsnbTthLAg7J207JqpKQrrlLDrnbzshJwgMX4xNe2WiSwg66eI7KeA66eJ7ZaJLTE17ZaJ6rmM7KeA7J2YIOuNsOydtO2EsOuKlCDrsoTroKTsp5AuCgpbVGVtcGVyYXR1cmUncyBNLUlRUiDqsoDstpzqsrDqs7xdCmBgYHtyfQpjYXQoIlRlbXBlcmF0dXJlIC0+PiIsICJPdXRsaWVycyhNLUlRUikgOiIsIG5yb3codGVtcF9PdXRsaWVycyksICIgLCAiLCAiUGFzc2VkIDoiLCBucm93KHRlbXBfUGFzc2VkKSkKYGBgCgpbVGVtcGVyYXR1cmUncyDsi5zqsIHtmZQg7LK07YGsXQpgYGB7cn0KYm94cGxvdChkYXRhMSR0ZW1wLCBjb2w9ImxpZ2h0Z3JleSIsIGhvcml6b250YWwgPSBULCB4bGFiPSLCsEMiLCB5bGFiPSIiLCBtYWluPSJ0ZW1wZXJhdHVyZSIpCmhpc3QoZGF0YTEkdGVtcCwgY29sPSJsaWdodGN5YW4iLCBicmVha3MgPSAxMDAsIHByb2JhYmlsaXR5ID0gVFJVRSwgeGxhYj0iwrBDIikKCmBgYApbVGVtcGVyYXR1cmUncyBEeW5hbWljIFBsb3R0aW5nXQpgYGB7cn0KcDwtZ2dwbG90KGRhdGExLCBhZXMoeD1qMmR0LCB5PXRlbXAsIGNvbD10ZW1wX2ZsYWcpKSArICBnZW9tX3BvaW50KHNpemU9MSkgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9YygiYmxhY2siLCAicmVkIikpICsgZ2d0aXRsZSgidGVtcGVyYXR1cmUgUGxvdCIpCmdncGxvdGx5KHApCgpgYGAKCgpbU2FsaW5pdHkncyBNLUlRUiDqsoDstpzqsrDqs7xdCmBgYHtyfQpjYXQoIlNhbGluaXR5IC0+PiIsICJPdXRsaWVycyhNLUlRUikgOiIsIG5yb3coc2FsaW5pdHlfT3V0bGllcnMpLCAiICwgIiwgIlBhc3NlZCA6IiwgbnJvdyhzYWxpbml0eV9QYXNzZWQpKQpgYGAKCltTYWxpbml0eSdzIOyLnOqwge2ZlCDssrTtgaxdCmBgYHtyfQpib3hwbG90KGRhdGExJHNhbGluaXR5LCBjb2w9ImxpZ2h0Z3JleSIsIGhvcml6b250YWwgPSBULCB4bGFiPSIiLCB5bGFiPSIiLCBtYWluPSJTYWxpbml0eSIpCmhpc3QoZGF0YTEkc2FsaW5pdHksIGNvbD0ibGlnaHRjeWFuIiwgYnJlYWtzID0gMTAwLCBwcm9iYWJpbGl0eSA9IFRSVUUsIHhsYWI9IiIpCgpgYGAKW1NhbGluaXR5J3MgRHluYW1pYyBQbG90dGluZ10KYGBge3J9CnA8LWdncGxvdChkYXRhMSwgYWVzKHg9ajJkdCwgeT1zYWxpbml0eSwgY29sPXNhbF9mbGFnKSkgKyAgZ2VvbV9wb2ludChzaXplPTEpICsKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPWMoImJsYWNrIiwgInJlZCIpKSArIGdndGl0bGUoIlNhbGluaXR5IFBsb3QiKQpnZ3Bsb3RseShwKQoKYGBgCgoKCgoK