install.packages("BIFIEsurvey")

Verinin Hazirlanmasi

# Turkiye'nin ogrenci verisini suzelim

  pisa_2015_stu_TUR <- subset(pisa_2015_stu,CNT=='Turkey')

   # Sinif Tekrarina ait golge degiskeni (0:Hayir, 1:Evet)

    pisa_2015_stu_TUR$Repeat <- ifelse(pisa_2015_stu_TUR$REPEAT=="Repeated a <grade>",0,1)
 
   # Okul oncesi egitime ait golge degisken degiskeni  (0:Hayir, 1:Evet)
  
    pisa_2015_stu_TUR$durecec <- NA

    pisa_2015_stu_TUR[which(pisa_2015_stu_TUR$ST125Q01NA=="I did not attend <ISCED 0>"),]$durecec <- 0
    pisa_2015_stu_TUR[which(pisa_2015_stu_TUR$ST125Q01NA=="1 year or younger" |
                            pisa_2015_stu_TUR$ST125Q01NA=="2 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="3 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="4 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="5 years" |
                            pisa_2015_stu_TUR$ST125Q01NA=="6 years or older"),]$durecec <- 1

  # Cinsiyete ait golge degisken  (0:Kiz, 1:Erkek)
  
    pisa_2015_stu_TUR$cins = ifelse(pisa_2015_stu_TUR$ST004D01T =="Male",1,0)

  # Okul turune ait golge degiskenler (Referans grup: Genel Lise, tip1: ilkogretim, tip2: mesleki ve teknik lise) 

    pisa_2015_stu_TUR$tip1 <- ifelse(pisa_2015_stu_TUR$PROGN=="Turkey: Basic Education",1,0)
    pisa_2015_stu_TUR$tip2 <- ifelse(pisa_2015_stu_TUR$PROGN=="Turkey: Vocational and Technical Secondary Education",1,0)

  # Sinif seviyesi
    # 7,8, ve 11 de cok ogrenci olmadigindan, iki gruba ayiriyoruz.
    # 9. sinif ve alti, 10.sinif ve ustu

    pisa_2015_stu_TUR$sinif <- ifelse(pisa_2015_stu_TUR$ST001D01T=="Grade 7" |
                                      pisa_2015_stu_TUR$ST001D01T=="Grade 8" |
                                      pisa_2015_stu_TUR$ST001D01T=="Grade 9",0,1)

# Okul verisini suzelim

  pisa_2015_sch_TUR <- subset(pisa_2015_sch,CNT=='Turkey')

  # Okul turune ait golge degisken

     pisa_2015_sch_TUR$tur <- ifelse(pisa_2015_sch_TUR$SCHLTYPE=="Private Independent",1,0)

# Okul ve ogrenci verisini birlestirelim

  pisa_2015_TUR <- merge(pisa_2015_stu_TUR,
                               pisa_2015_sch_TUR,
                               by=c("CNT","CNTSCHID") ,all=TRUE)

Matematik

Modelde year alan ogrenciye ait degiskenler:

Modelde year alan okula ait degiskenler:

# Once degiskenlere bi goz atalim


 hist(pisa_2015_stu_TUR$ESCS)

 table(pisa_2015_stu_TUR$cins)
## 
##    0    1 
## 2938 2957
 table(pisa_2015_stu_TUR$Repeat)
## 
##    0    1 
##  631 5221
 table(pisa_2015_stu_TUR$sinif)
## 
##    0    1 
## 1394 4501
 table(pisa_2015_sch_TUR$tur)
## 
##   0   1 
## 180   6
 table(pisa_2015_stu_TUR$durecec)
## 
##    0    1 
## 2620 2662
 hist(pisa_2015_stu_TUR$OUTHOURS)

 hist(pisa_2015_stu_TUR$BELONG)

 hist(pisa_2015_stu_TUR$ANXTEST)

 hist(pisa_2015_stu_TUR$MOTIVAT)

 hist(pisa_2015_stu_TUR$COOPERATE)

 hist(pisa_2015_stu_TUR$EMOSUPS)


require("BIFIEsurvey")
## Loading required package: BIFIEsurvey
## Warning: package 'BIFIEsurvey' was built under R version 3.2.5
## |-----------------------------------------------------------------
## | BIFIEsurvey 1.11-0 (2016-10-18)                                       
## | http://www.bifie.at                                             
## |-----------------------------------------------------------------

bifieobj.tur <- BIFIE.data.jack(pisa_2015_TUR, 
                            jktype = "RW_PISA" , 
                            wgtrep="W_FSTURWT",
                            pvpre = paste0("PV",1:10),
                            cdata=FALSE )
## +++ Generate BIFIE.data object
## |*|
## |-|
mod <- BIFIE.twolevelreg( BIFIEobj=bifieobj.tur, 
                           dep="MATH", 
                           formula.fixed  = ~ 1 + ESCS + cins + Repeat + durecec +
                                                + OUTHOURS + BELONG + ANXTEST + MOTIVAT + COOPERATE 
                                                + EMOSUPS + tip1 + tip2 + sinif + tur,
                           formula.random = ~ 1, 
                           idcluster="CNTSCHID",
                           wgtlevel2 = "W_SCHGRNRABWT", 
                           wgtlevel1 = "W_FSTUWT", 
                           se=TRUE)
##  
## Imputation 1 | Group 1 |--------
## Warning in stats::pt(-abs(dfr$t), df = dfr$df): NaNs produced
   summary(mod)
## ------------------------------------------------------------
## BIFIEsurvey 1.11-0 (2016-10-18) 
## Function 'BIFIE.twolevelreg'
## 
## Call:
## BIFIE.twolevelreg(BIFIEobj = bifieobj.tur, dep = "MATH", formula.fixed = ~1 + 
##     ESCS + cins + Repeat + durecec + +OUTHOURS + BELONG + ANXTEST + 
##     MOTIVAT + COOPERATE + EMOSUPS + tip1 + tip2 + sinif + tur, 
##     formula.random = ~1, idcluster = "CNTSCHID", wgtlevel2 = "W_SCHGRNRABWT", 
##     wgtlevel1 = "W_FSTUWT", se = TRUE)
## 
## Date of Analysis: 2016-12-21 09:40:23 
## Time difference of 0.7140009 secs
## Computation time: 0.7140009 
## 
## Multiply imputed dataset
## 
## Number of persons = 5895 
## Number of imputed datasets = 1 
## Number of Jackknife zones per dataset = 80 
## Fay factor = 0.05 
## 
## Number of persons: 4819 
## Number of clusters: 185 
## 
## Statistical Inference for Two-Level Linear Regression 
## 
##              parameter       est       SE      t df   p      VarRep
## 1     beta_(Intercept)  425.0492   6.5402  64.99  0 NaN     42.7739
## 2            beta_ESCS   13.1837   1.5393   8.56  0 NaN      2.3695
## 3            beta_cins   21.5842   2.6715   8.08  0 NaN      7.1371
## 4          beta_Repeat   21.7684   4.2008   5.18  0 NaN     17.6466
## 5         beta_durecec   -3.5507   2.4228  -1.47  0 NaN      5.8697
## 6        beta_OUTHOURS   -0.2694   0.0841  -3.20  0 NaN      0.0071
## 7          beta_BELONG    1.4132   0.6972   2.03  0 NaN      0.4860
## 8         beta_ANXTEST   -6.0486   1.1038  -5.48  0 NaN      1.2183
## 9         beta_MOTIVAT    5.7447   1.0946   5.25  0 NaN      1.1981
## 10      beta_COOPERATE    3.7201   0.9044   4.11  0 NaN      0.8179
## 11        beta_EMOSUPS    0.5986   0.9175   0.65  0 NaN      0.8419
## 12           beta_tip1  -54.3428  12.3404  -4.40  0 NaN    152.2848
## 13           beta_tip2  -57.5352   6.1937  -9.29  0 NaN     38.3620
## 14          beta_sinif   31.6213   3.3659   9.39  0 NaN     11.3291
## 15            beta_tur  -13.5937  11.8824  -1.14  0 NaN    141.1917
## 16     Var_(Intercept) 1448.7744 264.4403   5.48  0 NaN  69928.6494
## 17            ResidVar 3035.7952  28.8345 105.28  0 NaN    831.4268
## 18  ExplVar_Lev2_Fixed 1358.8330 248.4229   5.47  0 NaN  61713.9564
## 19 ExplVar_Lev2_Random    0.0000   0.0000    NaN NA  NA      0.0000
## 20       ResidVar_Lev2 1448.7744 264.4403   5.48  0 NaN  69928.6494
## 21  ExplVar_Lev1_Fixed  727.1084 121.6848   5.98  0 NaN  14807.1859
## 22 ExplVar_Lev1_Random    0.0000   0.0000    NaN NA  NA      0.0000
## 23       ResidVar_Lev1 3035.7952  28.8345 105.28  0 NaN    831.4268
## 24           Var_Total 6570.5110 422.2086  15.56  0 NaN 178260.1250
## 25             R2_Lev2    0.4840   0.0617   7.85  0 NaN      0.0038
## 26             R2_Lev1    0.1932   0.0227   8.53  0 NaN      0.0005
## 27            R2_Total    0.3175   0.0319   9.94  0 NaN      0.0010
## 28          ICC_Uncond    0.4273   0.0323  13.21  0 NaN      0.0010
## 29        ICC_UncondWB    0.4852   0.0341  14.23  0 NaN      0.0012
## 30            ICC_Cond    0.3231   0.0397   8.14  0 NaN      0.0016
   par <- mod$stat[1:15,]

   par <- par[order(abs(par[,2]),decreasing=T),]

   as.matrix(paste0(par[,1],"    ",round(par[,2],2),"(",round(par[,3],2),")"))
##       [,1]                              
##  [1,] "beta_(Intercept)    425.05(6.54)"
##  [2,] "beta_tip2    -57.54(6.19)"       
##  [3,] "beta_tip1    -54.34(12.34)"      
##  [4,] "beta_sinif    31.62(3.37)"       
##  [5,] "beta_Repeat    21.77(4.2)"       
##  [6,] "beta_cins    21.58(2.67)"        
##  [7,] "beta_tur    -13.59(11.88)"       
##  [8,] "beta_ESCS    13.18(1.54)"        
##  [9,] "beta_ANXTEST    -6.05(1.1)"      
## [10,] "beta_MOTIVAT    5.74(1.09)"      
## [11,] "beta_COOPERATE    3.72(0.9)"     
## [12,] "beta_durecec    -3.55(2.42)"     
## [13,] "beta_BELONG    1.41(0.7)"        
## [14,] "beta_EMOSUPS    0.6(0.92)"       
## [15,] "beta_OUTHOURS    -0.27(0.08)"

OKUMA BECERILERI

Modelde year alan ogrenciye ait degiskenler:

Modelde year alan okula ait degiskenler:

require("BIFIEsurvey")


mod <- BIFIE.twolevelreg( BIFIEobj=bifieobj.tur, 
                           dep="READ", 
                           formula.fixed  = ~ 1 + ESCS + cins + Repeat + durecec +
                                                + OUTHOURS + BELONG + ANXTEST + MOTIVAT + COOPERATE 
                                                + EMOSUPS + tip1 + tip2 + sinif + tur,
                           formula.random = ~ 1, 
                           idcluster="CNTSCHID",
                           wgtlevel2 = "W_SCHGRNRABWT", 
                           wgtlevel1 = "W_FSTUWT", 
                           se=TRUE)
##  
## Imputation 1 | Group 1 |--------
## Warning in stats::pt(-abs(dfr$t), df = dfr$df): NaNs produced
   summary(mod)
## ------------------------------------------------------------
## BIFIEsurvey 1.11-0 (2016-10-18) 
## Function 'BIFIE.twolevelreg'
## 
## Call:
## BIFIE.twolevelreg(BIFIEobj = bifieobj.tur, dep = "READ", formula.fixed = ~1 + 
##     ESCS + cins + Repeat + durecec + +OUTHOURS + BELONG + ANXTEST + 
##     MOTIVAT + COOPERATE + EMOSUPS + tip1 + tip2 + sinif + tur, 
##     formula.random = ~1, idcluster = "CNTSCHID", wgtlevel2 = "W_SCHGRNRABWT", 
##     wgtlevel1 = "W_FSTUWT", se = TRUE)
## 
## Date of Analysis: 2016-12-21 09:40:25 
## Time difference of 0.706002 secs
## Computation time: 0.706002 
## 
## Multiply imputed dataset
## 
## Number of persons = 5895 
## Number of imputed datasets = 1 
## Number of Jackknife zones per dataset = 80 
## Fay factor = 0.05 
## 
## Number of persons: 4819 
## Number of clusters: 185 
## 
## Statistical Inference for Two-Level Linear Regression 
## 
##              parameter       est       SE      t df   p     VarRep
## 1     beta_(Intercept)  455.3871   7.1316  63.85  0 NaN    50.8596
## 2            beta_ESCS   11.6011   1.7053   6.80  0 NaN     2.9082
## 3            beta_cins  -12.7611   3.0370  -4.20  0 NaN     9.2234
## 4          beta_Repeat   24.9927   5.7170   4.37  0 NaN    32.6844
## 5         beta_durecec   -3.5657   2.5263  -1.41  0 NaN     6.3823
## 6        beta_OUTHOURS   -0.4561   0.0739  -6.17  0 NaN     0.0055
## 7          beta_BELONG    3.0167   0.7811   3.86  0 NaN     0.6102
## 8         beta_ANXTEST   -5.5050   1.2275  -4.48  0 NaN     1.5067
## 9         beta_MOTIVAT    3.0406   1.2002   2.53  0 NaN     1.4406
## 10      beta_COOPERATE    7.0710   0.9980   7.09  0 NaN     0.9960
## 11        beta_EMOSUPS    4.3974   0.9796   4.49  0 NaN     0.9597
## 12           beta_tip1  -67.3428  11.7191  -5.75  0 NaN   137.3367
## 13           beta_tip2  -56.6184   6.2767  -9.02  0 NaN    39.3964
## 14          beta_sinif   28.9951   3.6650   7.91  0 NaN    13.4320
## 15            beta_tur  -28.9369  10.2926  -2.81  0 NaN   105.9376
## 16     Var_(Intercept) 1151.7257 170.2046   6.77  0 NaN 28969.5987
## 17            ResidVar 2934.7623  27.4777 106.81  0 NaN   755.0264
## 18  ExplVar_Lev2_Fixed 1547.5864 242.9738   6.37  0 NaN 59036.2634
## 19 ExplVar_Lev2_Random    0.0000   0.0000    NaN NA  NA     0.0000
## 20       ResidVar_Lev2 1151.7257 170.2046   6.77  0 NaN 28969.5987
## 21  ExplVar_Lev1_Fixed  774.5596 119.3435   6.49  0 NaN 14242.8816
## 22 ExplVar_Lev1_Random    0.0000   0.0000    NaN NA  NA     0.0000
## 23       ResidVar_Lev1 2934.7623  27.4777 106.81  0 NaN   755.0264
## 24           Var_Total 6408.6340 305.4450  20.98  0 NaN 93296.6609
## 25             R2_Lev2    0.5733   0.0572  10.03  0 NaN     0.0033
## 26             R2_Lev1    0.2088   0.0219   9.54  0 NaN     0.0005
## 27            R2_Total    0.3623   0.0269  13.45  0 NaN     0.0007
## 28          ICC_Uncond    0.4212   0.0252  16.71  0 NaN     0.0006
## 29        ICC_UncondWB    0.4851   0.0332  14.60  0 NaN     0.0011
## 30            ICC_Cond    0.2818   0.0298   9.46  0 NaN     0.0009
   par <- mod$stat[1:15,]

   par <- par[order(abs(par[,2]),decreasing=T),]

   as.matrix(paste0(par[,1],"    ",round(par[,2],2),"(",round(par[,3],2),")"))
##       [,1]                              
##  [1,] "beta_(Intercept)    455.39(7.13)"
##  [2,] "beta_tip1    -67.34(11.72)"      
##  [3,] "beta_tip2    -56.62(6.28)"       
##  [4,] "beta_sinif    29(3.66)"          
##  [5,] "beta_tur    -28.94(10.29)"       
##  [6,] "beta_Repeat    24.99(5.72)"      
##  [7,] "beta_cins    -12.76(3.04)"       
##  [8,] "beta_ESCS    11.6(1.71)"         
##  [9,] "beta_COOPERATE    7.07(1)"       
## [10,] "beta_ANXTEST    -5.51(1.23)"     
## [11,] "beta_EMOSUPS    4.4(0.98)"       
## [12,] "beta_durecec    -3.57(2.53)"     
## [13,] "beta_MOTIVAT    3.04(1.2)"       
## [14,] "beta_BELONG    3.02(0.78)"       
## [15,] "beta_OUTHOURS    -0.46(0.07)"

FEN

2015 yilinda FEN alanina dair ekstra degiskenler de olculdugu icin modelimiz daha genis.

Modelde year alan ogrenciye ait degiskenler:

Modelde year alan okula ait degiskenler:

# Modeldeki ek degiskenler

   hist(pisa_2015_stu_TUR$DISCLISCI)

   hist(pisa_2015_stu_TUR$TEACHSUP)

   hist(pisa_2015_stu_TUR$IBTEACH)

   hist(pisa_2015_stu_TUR$SCIEEFF)

   hist(pisa_2015_stu_TUR$EPIST)

require("BIFIEsurvey")

# IBTEACH degiskeninin yonunun tersine cevrilmesi lazim, ogrenci merkezli aktiviteler ne kadar artiyorsa bu indeksin degeri
# o kadar kucuk. 

   pisa_2015_TUR$IBTEACH <- -pisa_2015_TUR$IBTEACH

    bifieobj.tur <- BIFIE.data.jack(pisa_2015_TUR, 
                            jktype = "RW_PISA" , 
                            wgtrep="W_FSTURWT",
                            pvpre = paste0("PV",1:10),
                            cdata=FALSE )
## +++ Generate BIFIE.data object
## |*|
## |-|
mod <- BIFIE.twolevelreg( BIFIEobj=bifieobj.tur, 
                           dep="SCIE", 
                           formula.fixed  = ~ 1 + ESCS + cins + Repeat + durecec +
                                                + OUTHOURS + BELONG + ANXTEST + MOTIVAT + COOPERATE 
                                                + EMOSUPS + tip1 + tip2 + sinif + tur
                                                + DISCLISCI + TEACHSUP + IBTEACH + SCIEEFF + EPIST,
                           formula.random = ~ 1, 
                           idcluster="CNTSCHID",
                           wgtlevel2 = "W_SCHGRNRABWT", 
                           wgtlevel1 = "W_FSTUWT", 
                           se=TRUE)
##  
## Imputation 1 | Group 1 |--------
## Warning in stats::pt(-abs(dfr$t), df = dfr$df): NaNs produced
   summary(mod)
## ------------------------------------------------------------
## BIFIEsurvey 1.11-0 (2016-10-18) 
## Function 'BIFIE.twolevelreg'
## 
## Call:
## BIFIE.twolevelreg(BIFIEobj = bifieobj.tur, dep = "SCIE", formula.fixed = ~1 + 
##     ESCS + cins + Repeat + durecec + +OUTHOURS + BELONG + ANXTEST + 
##     MOTIVAT + COOPERATE + EMOSUPS + tip1 + tip2 + sinif + tur + 
##     DISCLISCI + TEACHSUP + IBTEACH + SCIEEFF + EPIST, formula.random = ~1, 
##     idcluster = "CNTSCHID", wgtlevel2 = "W_SCHGRNRABWT", wgtlevel1 = "W_FSTUWT", 
##     se = TRUE)
## 
## Date of Analysis: 2016-12-21 09:40:26 
## Time difference of 0.8590019 secs
## Computation time: 0.8590019 
## 
## Multiply imputed dataset
## 
## Number of persons = 5895 
## Number of imputed datasets = 1 
## Number of Jackknife zones per dataset = 80 
## Fay factor = 0.05 
## 
## Number of persons: 4363 
## Number of clusters: 180 
## 
## Statistical Inference for Two-Level Linear Regression 
## 
##              parameter       est       SE     t df   p      VarRep
## 1     beta_(Intercept)  442.0167   6.5134 67.86  0 NaN     42.4249
## 2            beta_ESCS   10.2708   1.5694  6.54  0 NaN      2.4630
## 3            beta_cins    6.0941   2.5889  2.35  0 NaN      6.7024
## 4          beta_Repeat   22.5515   4.5375  4.97  0 NaN     20.5887
## 5         beta_durecec   -2.5293   2.3423 -1.08  0 NaN      5.4862
## 6        beta_OUTHOURS   -0.3297   0.0732 -4.50  0 NaN      0.0054
## 7          beta_BELONG    0.1341   0.7629  0.18  0 NaN      0.5819
## 8         beta_ANXTEST   -7.1294   1.0228 -6.97  0 NaN      1.0461
## 9         beta_MOTIVAT    1.3004   1.0577  1.23  0 NaN      1.1186
## 10      beta_COOPERATE    3.2894   0.9072  3.63  0 NaN      0.8231
## 11        beta_EMOSUPS    0.5831   1.0370  0.56  0 NaN      1.0754
## 12           beta_tip1  -76.7755  12.9516 -5.93  0 NaN    167.7434
## 13           beta_tip2  -54.0052   5.7443 -9.40  0 NaN     32.9965
## 14          beta_sinif   27.1989   3.5464  7.67  0 NaN     12.5772
## 15            beta_tur  -15.9261  12.6409 -1.26  0 NaN    159.7922
## 16      beta_DISCLISCI    2.7200   1.3863  1.96  0 NaN      1.9218
## 17       beta_TEACHSUP    2.5261   1.1314  2.23  0 NaN      1.2801
## 18        beta_IBTEACH    7.0497   0.8375  8.42  0 NaN      0.7014
## 19        beta_SCIEEFF    4.2799   0.8520  5.02  0 NaN      0.7259
## 20          beta_EPIST    8.1028   0.8377  9.67  0 NaN      0.7018
## 21     Var_(Intercept) 1106.4242 178.3028  6.21  0 NaN  31791.9034
## 22            ResidVar 2709.4634  33.3701 81.19  0 NaN   1113.5647
## 23  ExplVar_Lev2_Fixed 1408.3079 231.9996  6.07  0 NaN  53823.8230
## 24 ExplVar_Lev2_Random    0.0000   0.0000   NaN NA  NA      0.0000
## 25       ResidVar_Lev2 1106.4242 178.3028  6.21  0 NaN  31791.9034
## 26  ExplVar_Lev1_Fixed  723.4814  98.5277  7.34  0 NaN   9707.7029
## 27 ExplVar_Lev1_Random    0.0000   0.0000   NaN NA  NA      0.0000
## 28       ResidVar_Lev1 2709.4634  33.3701 81.19  0 NaN   1113.5647
## 29           Var_Total 5947.6769 324.3198 18.34  0 NaN 105183.3073
## 30             R2_Lev2    0.5600   0.0569  9.83  0 NaN      0.0032
## 31             R2_Lev1    0.2107   0.0188 11.19  0 NaN      0.0004
## 32            R2_Total    0.3584   0.0282 12.69  0 NaN      0.0008
## 33          ICC_Uncond    0.4228   0.0284 14.90  0 NaN      0.0008
## 34        ICC_UncondWB    0.4986   0.0335 14.88  0 NaN      0.0011
## 35            ICC_Cond    0.2900   0.0332  8.72  0 NaN      0.0011
   par <- mod$stat[1:20,]

   par <- par[order(abs(par[,2]),decreasing=T),]

   as.matrix(paste0(par[,1],"    ",round(par[,2],2),"(",round(par[,3],2),")"))
##       [,1]                              
##  [1,] "beta_(Intercept)    442.02(6.51)"
##  [2,] "beta_tip1    -76.78(12.95)"      
##  [3,] "beta_tip2    -54.01(5.74)"       
##  [4,] "beta_sinif    27.2(3.55)"        
##  [5,] "beta_Repeat    22.55(4.54)"      
##  [6,] "beta_tur    -15.93(12.64)"       
##  [7,] "beta_ESCS    10.27(1.57)"        
##  [8,] "beta_EPIST    8.1(0.84)"         
##  [9,] "beta_ANXTEST    -7.13(1.02)"     
## [10,] "beta_IBTEACH    7.05(0.84)"      
## [11,] "beta_cins    6.09(2.59)"         
## [12,] "beta_SCIEEFF    4.28(0.85)"      
## [13,] "beta_COOPERATE    3.29(0.91)"    
## [14,] "beta_DISCLISCI    2.72(1.39)"    
## [15,] "beta_durecec    -2.53(2.34)"     
## [16,] "beta_TEACHSUP    2.53(1.13)"     
## [17,] "beta_MOTIVAT    1.3(1.06)"       
## [18,] "beta_EMOSUPS    0.58(1.04)"      
## [19,] "beta_OUTHOURS    -0.33(0.07)"    
## [20,] "beta_BELONG    0.13(0.76)"