In this analysis we process the data regarding US severe ewather events that can cause public health and economic problems. These events can have a significant cost in human fatalities and injuries as well as property damage and other financial consequences. We start by downloading online the NOOA database from: https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2. We continue by cleaning our data and aggregating to find the Event Types with the most important outcomes. We present our results using plots. The analysis was performed with version 0.98.501 of RStudia on Windows 8 x64
myurl <- "http://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(url = myurl, destfile = "StormData.csv.bz2")
extracted.file <- bzfile("StormData.csv.bz2")
mydata <- read.csv(extracted.file)
str(mydata)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
names(mydata)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP
keep <- c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG",
"CROPDMGEXP")
mydata2 <- mydata[keep]
names(mydata2)
## [1] "EVTYPE" "FATALITIES" "INJURIES" "PROPDMG" "PROPDMGEXP"
## [6] "CROPDMG" "CROPDMGEXP"
len <- length(unique(mydata2$EVTYPE))
print(len)
## [1] 985
mydata2$EVTYPE <- toupper(mydata2$EVTYPE)
len2 <- length(unique(mydata2$EVTYPE))
print(len2)
## [1] 898
mydata2$EVTYPE[grep("TORNADO", mydata2$EVTYPE)] <- "TORNADO"
mydata2$EVTYPE[grep("FLOOD", mydata2$EVTYPE)] <- "FLOOD"
mydata2$EVTYPE[grep("RAIN", mydata2$EVTYPE)] <- "RAIN"
mydata2$EVTYPE[grep("FIRE", mydata2$EVTYPE)] <- "FIRE"
mydata2$EVTYPE[grep("HEAT", mydata2$EVTYPE)] <- "HEAT"
mydata2$EVTYPE[grep("SNOW", mydata2$EVTYPE)] <- "SNOW"
mydata2$EVTYPE[grep("WIND", mydata2$EVTYPE)] <- "WIND"
mydata2$EVTYPE[grep("COLD", mydata2$EVTYPE)] <- "COLD"
mydata2$EVTYPE[grep("THUNDERSTORM", mydata2$EVTYPE)] <- "THUNDERSTORM"
mydata2$EVTYPE[grep("HAIL", mydata2$EVTYPE)] <- "HAIL"
mydata2$EVTYPE[grep("ICE", mydata2$EVTYPE)] <- "ICE"
mydata2$EVTYPE[grep("HURRICANE", mydata2$EVTYPE)] <- "HURRICANE"
len3 <- length(unique(mydata2$EVTYPE))
print(len3)
## [1] 335
library(plyr)
groupByInjuries <- ddply(mydata2, ~EVTYPE, summarise, sum = sum(INJURIES))
groupByInjuries <- groupByInjuries[groupByInjuries$sum > 0, ]
groupByInjuries$EVTYPE <- factor(groupByInjuries$EVTYPE)
groupByFatalities <- ddply(mydata2, ~EVTYPE, summarise, sum = sum(FATALITIES))
groupByFatalities <- groupByFatalities[groupByFatalities$sum > 0, ]
groupByFatalities$EVTYPE <- factor(groupByFatalities$EVTYPE)
groupByInjuries <- groupByInjuries[order(groupByInjuries$sum, decreasing = T),
]
groupByInjuries2 <- groupByInjuries[1:10, ]
with(groupByInjuries2, plot(EVTYPE, sum, main = "Total injuries by event type",
col = "darkred"))
groupByFatalities <- groupByFatalities[order(groupByFatalities$sum, decreasing = T),
]
groupByFatalities <- groupByFatalities[1:10, ]
with(groupByFatalities, plot(EVTYPE, sum, main = "Total fatalities by event type",
col = "darkred"))