getwd()
## [1] "C:/Users/dell/Desktop"
setwd("C:/Users/dell/Desktop")
#dir(,pattern = ".csv")
memory.limit()
## [1] 1535
memory.size()
## [1] 18.04
rm(list = ls())
gc()
##          used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 365542  9.8     592000 15.9   460000 12.3
## Vcells 372990  2.9    1023718  7.9   752284  5.8
library(car)
library(MASS)
data(Boston, package="MASS")
#?Boston
# crim
# per capita crime rate by town.
# 
# zn
# proportion of residential land zoned for lots over 25,000 sq.ft.
# 
# indus
# proportion of non-retail business acres per town.
# 
# chas
# Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
# 
# nox
# nitrogen oxides concentration (parts per 10 million).
# 
# rm
# average number of rooms per dwelling.
# 
# age
# proportion of owner-occupied units built prior to 1940.
# 
# dis
# weighted mean of distances to five Boston employment centres.
# 
# rad
# index of accessibility to radial highways.
# 
# tax
# full-value property-tax rate per \$10,000.
# 
# ptratio
# pupil-teacher ratio by town.
# 
# black
# 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.
# 
# lstat
# lower status of the population (percent).
# 
# medv
# median value of owner-occupied homes in \$1000s.
# 
# Source
# 

#Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102.







cor(Boston)
##                crim          zn       indus         chas         nox
## crim     1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn      -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus    0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas    -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox      0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm      -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age      0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis     -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad      0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax      0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio  0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black   -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat    0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv    -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
##                  rm         age         dis          rad         tax
## crim    -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431
## zn       0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332
## indus   -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018
## chas     0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652
## nox     -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320
## rm       1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783
## age     -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559
## dis      0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158
## rad     -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819
## tax     -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000
## ptratio -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304
## black    0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801
## lstat   -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341
## medv     0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593
##            ptratio       black      lstat       medv
## crim     0.2899456 -0.38506394  0.4556215 -0.3883046
## zn      -0.3916785  0.17552032 -0.4129946  0.3604453
## indus    0.3832476 -0.35697654  0.6037997 -0.4837252
## chas    -0.1215152  0.04878848 -0.0539293  0.1752602
## nox      0.1889327 -0.38005064  0.5908789 -0.4273208
## rm      -0.3555015  0.12806864 -0.6138083  0.6953599
## age      0.2615150 -0.27353398  0.6023385 -0.3769546
## dis     -0.2324705  0.29151167 -0.4969958  0.2499287
## rad      0.4647412 -0.44441282  0.4886763 -0.3816262
## tax      0.4608530 -0.44180801  0.5439934 -0.4685359
## ptratio  1.0000000 -0.17738330  0.3740443 -0.5077867
## black   -0.1773833  1.00000000 -0.3660869  0.3334608
## lstat    0.3740443 -0.36608690  1.0000000 -0.7376627
## medv    -0.5077867  0.33346082 -0.7376627  1.0000000
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
library(corrgram)
corrgram(Boston)

attach(Boston)
boxplot(medv~black)

plot(medv~black)

plot(medv~rm)

str(Boston)
## 'data.frame':    506 obs. of  14 variables:
##  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...
##  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
##  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
##  $ chas   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
##  $ rm     : num  6.58 6.42 7.18 7 7.15 ...
##  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
##  $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...
##  $ rad    : int  1 2 2 3 3 3 5 5 5 5 ...
##  $ tax    : num  296 242 242 222 222 222 311 311 311 311 ...
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
##  $ black  : num  397 397 393 395 397 ...
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
RegModel.1 <- 
  lm(medv~age+black+chas+crim+dis+indus+lstat+nox+ptratio+rad+rm+tax+zn, 
     data=Boston)
summary(RegModel.1)
## 
## Call:
## lm(formula = medv ~ age + black + chas + crim + dis + indus + 
##     lstat + nox + ptratio + rad + rm + tax + zn, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.595  -2.730  -0.518   1.777  26.199 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.646e+01  5.103e+00   7.144 3.28e-12 ***
## age          6.922e-04  1.321e-02   0.052 0.958229    
## black        9.312e-03  2.686e-03   3.467 0.000573 ***
## chas         2.687e+00  8.616e-01   3.118 0.001925 ** 
## crim        -1.080e-01  3.286e-02  -3.287 0.001087 ** 
## dis         -1.476e+00  1.995e-01  -7.398 6.01e-13 ***
## indus        2.056e-02  6.150e-02   0.334 0.738288    
## lstat       -5.248e-01  5.072e-02 -10.347  < 2e-16 ***
## nox         -1.777e+01  3.820e+00  -4.651 4.25e-06 ***
## ptratio     -9.527e-01  1.308e-01  -7.283 1.31e-12 ***
## rad          3.060e-01  6.635e-02   4.613 5.07e-06 ***
## rm           3.810e+00  4.179e-01   9.116  < 2e-16 ***
## tax         -1.233e-02  3.760e-03  -3.280 0.001112 ** 
## zn           4.642e-02  1.373e-02   3.382 0.000778 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.745 on 492 degrees of freedom
## Multiple R-squared:  0.7406, Adjusted R-squared:  0.7338 
## F-statistic: 108.1 on 13 and 492 DF,  p-value: < 2.2e-16
vif(RegModel.1)
##      age    black     chas     crim      dis    indus    lstat      nox 
## 3.100826 1.348521 1.073995 1.792192 3.955945 3.991596 2.941491 4.393720 
##  ptratio      rad       rm      tax       zn 
## 1.799084 7.484496 1.933744 9.008554 2.298758
library(zoo, pos=15)
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(lmtest, pos=15)
bptest(RegModel.1)
## 
##  studentized Breusch-Pagan test
## 
## data:  RegModel.1
## BP = 65.122, df = 13, p-value = 6.265e-09
RegModel.2 <- lm(medv~black+chas+crim+dis+lstat+nox+ptratio+rm+zn, 
                 data=Boston)
summary(RegModel.2)
## 
## Call:
## lm(formula = medv ~ black + chas + crim + dis + lstat + nox + 
##     ptratio + rm + zn, data = Boston)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.803  -2.832  -0.625   1.454  27.766 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  29.507997   4.872538   6.056 2.76e-09 ***
## black         0.008292   0.002688   3.084 0.002153 ** 
## chas          3.029924   0.868349   3.489 0.000527 ***
## crim         -0.061174   0.030377  -2.014 0.044567 *  
## dis          -1.431665   0.188603  -7.591 1.59e-13 ***
## lstat        -0.525004   0.048351 -10.858  < 2e-16 ***
## nox         -16.088513   3.232702  -4.977 8.93e-07 ***
## ptratio      -0.838640   0.117342  -7.147 3.19e-12 ***
## rm            4.149667   0.407685  10.179  < 2e-16 ***
## zn            0.042032   0.013422   3.131 0.001842 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.833 on 496 degrees of freedom
## Multiple R-squared:  0.7288, Adjusted R-squared:  0.7239 
## F-statistic: 148.1 on 9 and 496 DF,  p-value: < 2.2e-16
vif(RegModel.2)
##    black     chas     crim      dis    lstat      nox  ptratio       rm 
## 1.302455 1.051879 1.476281 3.410535 2.577927 3.034316 1.395503 1.774261 
##       zn 
## 2.119038
bptest(medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm + zn, 
       varformula = ~ fitted.values(RegModel.2), studentize=FALSE, data=Boston)
## 
##  Breusch-Pagan test
## 
## data:  medv ~ black + chas + crim + dis + lstat + nox + ptratio + rm +     zn
## BP = 8.817, df = 1, p-value = 0.002984
outlierTest(RegModel.2)
##     rstudent unadjusted p-value Bonferonni p
## 369 6.093117         2.2275e-09   1.1271e-06
## 372 5.574335         4.0893e-08   2.0692e-05
## 373 5.360117         1.2776e-07   6.4644e-05
Boston <- Boston[-c(369,372,373),]
RegModel.3 <- lm(medv~black+chas+crim+lstat+nox+ptratio+rm+zn, data=Boston)
summary(RegModel.3)
## 
## Call:
## lm(formula = medv ~ black + chas + crim + lstat + nox + ptratio + 
##     rm + zn, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -16.6944  -2.6544  -0.6449   1.6392  21.4155 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11.386058   4.150172   2.744 0.006300 ** 
## black        0.008849   0.002545   3.476 0.000553 ***
## chas         2.670557   0.833048   3.206 0.001434 ** 
## crim        -0.046149   0.028565  -1.616 0.106827    
## lstat       -0.392872   0.046578  -8.435 3.68e-16 ***
## nox         -5.144940   2.539786  -2.026 0.043329 *  
## ptratio     -0.958587   0.111396  -8.605  < 2e-16 ***
## rm           5.318514   0.384910  13.818  < 2e-16 ***
## zn          -0.010100   0.011040  -0.915 0.360736    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.578 on 494 degrees of freedom
## Multiple R-squared:  0.744,  Adjusted R-squared:  0.7399 
## F-statistic: 179.5 on 8 and 494 DF,  p-value: < 2.2e-16
RegModel.4 <- lm(medv~black+lstat+ptratio+rm+zn, data=Boston)
summary(RegModel.4)
## 
## Call:
## lm(formula = medv ~ black + lstat + ptratio + rm + zn, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.2574  -2.8802  -0.6129   1.8640  22.9620 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.253649   3.879508   2.385   0.0174 *  
## black        0.011319   0.002462   4.598 5.43e-06 ***
## lstat       -0.453250   0.041643 -10.884  < 2e-16 ***
## ptratio     -0.991397   0.108946  -9.100  < 2e-16 ***
## rm           5.274984   0.386849  13.636  < 2e-16 ***
## zn          -0.004863   0.010154  -0.479   0.6322    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.644 on 497 degrees of freedom
## Multiple R-squared:  0.735,  Adjusted R-squared:  0.7323 
## F-statistic: 275.7 on 5 and 497 DF,  p-value: < 2.2e-16
RegModel.5 <- lm(medv~black+lstat+ptratio+rm, data=Boston)
summary(RegModel.5)
## 
## Call:
## lm(formula = medv ~ black + lstat + ptratio + rm, data = Boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -15.1780  -2.8640  -0.6212   1.8545  23.0366 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.92877    3.81678   2.339   0.0197 *  
## black        0.01130    0.00246   4.592 5.55e-06 ***
## lstat       -0.44870    0.04051 -11.075  < 2e-16 ***
## ptratio     -0.97746    0.10491  -9.317  < 2e-16 ***
## rm           5.26910    0.38635  13.638  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.64 on 498 degrees of freedom
## Multiple R-squared:  0.7348, Adjusted R-squared:  0.7327 
## F-statistic:   345 on 4 and 498 DF,  p-value: < 2.2e-16
vif(RegModel.5)
##    black    lstat  ptratio       rm 
## 1.182491 1.954482 1.205162 1.715115
bptest(medv ~ black + lstat + ptratio + rm, varformula = ~ 
         fitted.values(RegModel.5), studentize=FALSE, data=Boston)
## 
##  Breusch-Pagan test
## 
## data:  medv ~ black + lstat + ptratio + rm
## BP = 0.21772, df = 1, p-value = 0.6408
#install.packages("gvlma")
#library(gvlma)
#Boston$medvbc=boxcox(Boston$medv)
#http://rstatistics.net/how-to-test-a-regression-model-for-heteroscedasticity-and-if-present-how-to-correct-it/


#Overfitting
a=nrow(Boston)
a
## [1] 503
b=round(0.7*a)
b
## [1] 352
random_row_numbs=sample(a,b,F)
random_row_numbs
##   [1] 417  35 286 410 352 408 346 274 195 379 180 165 318 110 231  72 366
##  [18] 425  27  16 401 368 249 469 345 444 442 203 263 419  80  70  89 470
##  [35]  57  88  58 234 177 478 152 473 420 182 247  77 190 313 457 303 186
##  [52] 446 100 422 264 333 142 230 448 254  85 340 102 405 295 233 302   4
##  [69] 135 243 236  81  34 397 139 222  48  20 240 371 188 259 158 199 464
##  [86] 441 258 283 466 497 284  51 407 443 271 316 130 246  98  64  74 291
## [103] 117 296  46  86 336  28  13 227 450 118 106 140 131 374 490  14  23
## [120] 307   1 115 288 492 252  90 196 114 472  11 462 388 456 221 503 427
## [137]  79 418  59 421 260 373 458 451 493 431 133 334 200 282  56 146 424
## [154] 276 395 463 194   7 148 482 312   2 479 175  73 229 394  40 209 187
## [171]  17 261 269 141 400 347 322 432 239  41 381 159 306  10 370 277  49
## [188]  24 323 500 372 292 168 383 124 127 319 498 272 353  53  94 242 321
## [205] 314 392 328 213 255 459 308 486 166 361 294 440  87   8 217 445 423
## [222] 206 220 428  97 112 151 399 226 281  32 103 358 193 251 172 329  84
## [239] 205 477 237  33 309 491 364 484 216 433  65 447  39 275 359 300 439
## [256]  52 268 385 449 183 278 435 232 297 211 348 365 137 173 163  63 192
## [273] 105 357  76 437 378  18 341 202  75 452 489  31 273 162 413 317  26
## [290] 416  67   5 138 121 104 356 426 299 332 136 499  15  30  25  50 119
## [307] 384 455 176 335 289 210 393  93 107 305 429 406 280 496 483 480 108
## [324] 298 344  29 460 343 225 201 191 396 468 125 235 197 198 174 485 143
## [341] 387 409 156 290  71 350 132 149 331 218 212 109
plot(random_row_numbs)

Boston_train=Boston[random_row_numbs,]
Boston_test=Boston[-random_row_numbs,]


RegModel.6 <- lm(medv~black+lstat+ptratio+rm, data=Boston_train)

summary(RegModel.6)
## 
## Call:
## lm(formula = medv ~ black + lstat + ptratio + rm, data = Boston_train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.6989  -2.8976  -0.6286   1.8782  20.9866 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.082977   4.685939   2.579 0.010333 *  
## black        0.010551   0.002876   3.668 0.000283 ***
## lstat       -0.459176   0.049661  -9.246  < 2e-16 ***
## ptratio     -1.081483   0.130743  -8.272 2.86e-15 ***
## rm           5.130985   0.465497  11.023  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.731 on 347 degrees of freedom
## Multiple R-squared:  0.7336, Adjusted R-squared:  0.7305 
## F-statistic: 238.8 on 4 and 347 DF,  p-value: < 2.2e-16
vif(RegModel.6)
##    black    lstat  ptratio       rm 
## 1.181865 1.909594 1.266947 1.670012
outlierTest(RegModel.6)
##     rstudent unadjusted p-value Bonferonni p
## 371 4.597485         6.0040e-06    0.0021134
## 413 4.320507         2.0369e-05    0.0071698
## 366 4.216016         3.1779e-05    0.0111860
## 368 4.012047         7.3806e-05    0.0259800
bptest(RegModel.6)
## 
##  studentized Breusch-Pagan test
## 
## data:  RegModel.6
## BP = 1.9743, df = 4, p-value = 0.7405
#?
dbc=boxcox(RegModel.6)

dbc
## $x
##   [1] -2.00000000 -1.95959596 -1.91919192 -1.87878788 -1.83838384
##   [6] -1.79797980 -1.75757576 -1.71717172 -1.67676768 -1.63636364
##  [11] -1.59595960 -1.55555556 -1.51515152 -1.47474747 -1.43434343
##  [16] -1.39393939 -1.35353535 -1.31313131 -1.27272727 -1.23232323
##  [21] -1.19191919 -1.15151515 -1.11111111 -1.07070707 -1.03030303
##  [26] -0.98989899 -0.94949495 -0.90909091 -0.86868687 -0.82828283
##  [31] -0.78787879 -0.74747475 -0.70707071 -0.66666667 -0.62626263
##  [36] -0.58585859 -0.54545455 -0.50505051 -0.46464646 -0.42424242
##  [41] -0.38383838 -0.34343434 -0.30303030 -0.26262626 -0.22222222
##  [46] -0.18181818 -0.14141414 -0.10101010 -0.06060606 -0.02020202
##  [51]  0.02020202  0.06060606  0.10101010  0.14141414  0.18181818
##  [56]  0.22222222  0.26262626  0.30303030  0.34343434  0.38383838
##  [61]  0.42424242  0.46464646  0.50505051  0.54545455  0.58585859
##  [66]  0.62626263  0.66666667  0.70707071  0.74747475  0.78787879
##  [71]  0.82828283  0.86868687  0.90909091  0.94949495  0.98989899
##  [76]  1.03030303  1.07070707  1.11111111  1.15151515  1.19191919
##  [81]  1.23232323  1.27272727  1.31313131  1.35353535  1.39393939
##  [86]  1.43434343  1.47474747  1.51515152  1.55555556  1.59595960
##  [91]  1.63636364  1.67676768  1.71717172  1.75757576  1.79797980
##  [96]  1.83838384  1.87878788  1.91919192  1.95959596  2.00000000
## 
## $y
##   [1] -859.1799 -847.1039 -835.1407 -823.2931 -811.5635 -799.9545 -788.4687
##   [8] -777.1090 -765.8782 -754.7796 -743.8162 -732.9914 -722.3087 -711.7718
##  [15] -701.3844 -691.1505 -681.0742 -671.1596 -661.4114 -651.8339 -642.4319
##  [22] -633.2102 -624.1740 -615.3282 -606.6782 -598.2292 -589.9869 -581.9566
##  [29] -574.1441 -566.5549 -559.1948 -552.0694 -545.1843 -538.5451 -532.1573
##  [36] -526.0261 -520.1569 -514.5544 -509.2236 -504.1689 -499.3943 -494.9038
##  [43] -490.7007 -486.7882 -483.1687 -479.8445 -476.8171 -474.0877 -471.6570
##  [50] -469.5250 -467.6913 -466.1549 -464.9143 -463.9677 -463.3123 -462.9453
##  [57] -462.8632 -463.0621 -463.5379 -464.2858 -465.3009 -466.5779 -468.1114
##  [64] -469.8955 -471.9244 -474.1919 -476.6919 -479.4181 -482.3641 -485.5236
##  [71] -488.8903 -492.4578 -496.2198 -500.1703 -504.3031 -508.6121 -513.0917
##  [78] -517.7360 -522.5394 -527.4966 -532.6022 -537.8512 -543.2387 -548.7598
##  [85] -554.4099 -560.1847 -566.0799 -572.0912 -578.2149 -584.4471 -590.7842
##  [92] -597.2227 -603.7593 -610.3907 -617.1139 -623.9259 -630.8240 -637.8056
##  [99] -644.8680 -652.0084