rm(list = ls())
library(knitr)
library(foreign)
library(lavaan)
## This is lavaan 0.5-22
## lavaan is BETA software! Please report any bugs.
setwd(dir = "/Users/ivanropovik/OneDrive/Projects/APVV IK/DATA")
data <- read.spss("APVV_ANALOGIES_ARTICLE_imputed.sav", to.data.frame=TRUE)
## Warning in read.spss("APVV_ANALOGIES_ARTICLE_imputed.sav", to.data.frame
## = TRUE): APVV_ANALOGIES_ARTICLE_imputed.sav: Unrecognized record type 7,
## subtype 18 encountered in system file
## Warning in read.spss("APVV_ANALOGIES_ARTICLE_imputed.sav", to.data.frame
## = TRUE): APVV_ANALOGIES_ARTICLE_imputed.sav: Unrecognized record type 7,
## subtype 24 encountered in system file
#attach(data)

data$P_STROOP_INH_CAS <- with(data, ((max(P_STROOP_INH_CAS) + 1) - P_STROOP_INH_CAS))
data$P_TMT_stried <- with(data, ((max(P_TMT_stried) + 1) - P_TMT_stried))
data$AL_HINT_SUM <- with(data, ((max(AL_HINT_SUM) + 1) - AL_HINT_SUM))

model.ini <- '
Att =~ a*P_STROOP_INH_CAS + b*WJ_VIZ_POROV
Fluency =~ c*P_FLUE_PISM_SUM + d*P_DF_spravne_spolu
Shifting =~ e*P_TMT_stried + f*P_FLUE_STR_POC
WM =~ g*WJ_CIS_RADY + h*TOH_SCORE
gF =~ i*WJ_PRIEST_VZTAH + j*WJ_KV_VYVODZ
AtL =~ k*Learn + l*AL_HINT_SUM
Fluency ~ r*Att
Shifting ~ s*Att
WM ~ t*Att
gF ~ u*WM
AtL ~ v*WM
'

fitted.model <- sem(model = model.ini, data = data, meanstructure = FALSE,
                    std.lv = FALSE, estimator = "ML", test = "standard",
                    orthogonal = TRUE, std.ov = TRUE, likelihood = "wishart", bootstrap = 2000)
summary(fitted.model, standardized = TRUE, rsquare = TRUE)
## lavaan (0.5-22) converged normally after  39 iterations
## 
##   Number of observations                           210
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic               76.130
##   Degrees of freedom                                49
##   P-value (Chi-square)                           0.008
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Att =~                                                                
##     P_STROOP_I (a)    1.000                               0.648    0.648
##     WJ_VIZ_POR (b)    0.979    0.145    6.769    0.000    0.634    0.634
##   Fluency =~                                                            
##     P_FLUE_PIS (c)    1.000                               0.476    0.476
##     P_DF_sprv_ (d)    1.057    0.245    4.320    0.000    0.503    0.503
##   Shifting =~                                                           
##     P_TMT_strd (e)    1.000                               0.750    0.750
##     P_FLUE_STR (f)    0.624    0.122    5.124    0.000    0.468    0.468
##   WM =~                                                                 
##     WJ_CIS_RAD (g)    1.000                               0.622    0.622
##     TOH_SCORE  (h)    0.411    0.134    3.062    0.002    0.256    0.256
##   gF =~                                                                 
##     WJ_PRIEST_ (i)    1.000                               0.576    0.576
##     WJ_KV_VYVO (j)    1.360    0.216    6.307    0.000    0.784    0.784
##   AtL =~                                                                
##     Learn      (k)    1.000                               0.762    0.762
##     AL_HINT_SU (l)    0.957    0.162    5.897    0.000    0.729    0.729
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Fluency ~                                                             
##     Att        (r)    0.650    0.133    4.881    0.000    0.885    0.885
##   Shifting ~                                                            
##     Att        (s)    1.036    0.150    6.896    0.000    0.895    0.895
##   WM ~                                                                  
##     Att        (t)    0.545    0.115    4.735    0.000    0.568    0.568
##   gF ~                                                                  
##     WM         (u)    0.862    0.171    5.029    0.000    0.930    0.930
##   AtL ~                                                                 
##     WM         (v)    0.752    0.146    5.158    0.000    0.614    0.614
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Fluency ~~                                                            
##    .Shifting          0.000                               0.000    0.000
##    .gF                0.000                               0.000    0.000
##    .AtL               0.000                               0.000    0.000
##  .Shifting ~~                                                           
##    .gF                0.000                               0.000    0.000
##    .AtL               0.000                               0.000    0.000
##  .gF ~~                                                                 
##    .AtL               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .P_STROOP_INH_C    0.580    0.075    7.723    0.000    0.580    0.580
##    .WJ_VIZ_POROV      0.598    0.076    7.905    0.000    0.598    0.598
##    .P_FLUE_PISM_SU    0.774    0.097    7.987    0.000    0.774    0.774
##    .P_DF_sprvn_spl    0.747    0.100    7.506    0.000    0.747    0.747
##    .P_TMT_stried      0.437    0.107    4.076    0.000    0.437    0.437
##    .P_FLUE_STR_POC    0.781    0.085    9.136    0.000    0.781    0.781
##    .WJ_CIS_RADY       0.613    0.081    7.554    0.000    0.613    0.613
##    .TOH_SCORE         0.935    0.094    9.963    0.000    0.935    0.935
##    .WJ_PRIEST_VZTA    0.668    0.079    8.404    0.000    0.668    0.668
##    .WJ_KV_VYVODZ      0.386    0.092    4.203    0.000    0.386    0.386
##    .Learn             0.419    0.099    4.233    0.000    0.419    0.419
##    .AL_HINT_SUM       0.469    0.094    4.966    0.000    0.469    0.469
##     Att               0.420    0.094    4.485    0.000    1.000    1.000
##    .Fluency           0.049    0.059    0.823    0.410    0.216    0.216
##    .Shifting          0.112    0.102    1.100    0.271    0.199    0.199
##    .WM                0.262    0.069    3.784    0.000    0.677    0.677
##    .gF                0.045    0.050    0.899    0.368    0.135    0.135
##    .AtL               0.362    0.095    3.812    0.000    0.623    0.623
## 
## R-Square:
##                    Estimate
##     P_STROOP_INH_C    0.420
##     WJ_VIZ_POROV      0.402
##     P_FLUE_PISM_SU    0.226
##     P_DF_sprvn_spl    0.253
##     P_TMT_stried      0.563
##     P_FLUE_STR_POC    0.219
##     WJ_CIS_RADY       0.387
##     TOH_SCORE         0.065
##     WJ_PRIEST_VZTA    0.332
##     WJ_KV_VYVODZ      0.614
##     Learn             0.581
##     AL_HINT_SUM       0.531
##     Fluency           0.784
##     Shifting          0.801
##     WM                0.323
##     gF                0.865
##     AtL               0.377
fitMeasures(fitted.model)
##                npar                fmin               chisq 
##              29.000               0.182              76.130 
##                  df              pvalue      baseline.chisq 
##              49.000               0.008             543.661 
##         baseline.df     baseline.pvalue                 cfi 
##              66.000               0.000               0.943 
##                 tli                nnfi                 rfi 
##               0.923               0.923               0.811 
##                 nfi                pnfi                 ifi 
##               0.860               0.638               0.945 
##                 rni                logl   unrestricted.logl 
##               0.943           -3340.841           -3302.594 
##                 aic                 bic              ntotal 
##            6739.681            6836.609             210.000 
##                bic2               rmsea      rmsea.ci.lower 
##            6744.722               0.051               0.027 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.073               0.434               0.055 
##          rmr_nomean                srmr        srmr_bentler 
##               0.055               0.055               0.055 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.055               0.055               0.055 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.055               0.055             183.121 
##               cn_01                 gfi                agfi 
##             206.678               0.943               0.909 
##                pgfi                 mfi                ecvi 
##               0.592               0.937               0.642
residuals(fitted.model, type = "cor")$cor
##                    P_STRO WJ_VIZ P_FLUE_P P_DF__ P_TMT_ P_FLUE_S WJ_CIS
## P_STROOP_INH_CAS    0.000                                              
## WJ_VIZ_POROV        0.089  0.000                                       
## P_FLUE_PISM_SUM    -0.052 -0.026  0.000                                
## P_DF_spravne_spolu  0.000 -0.053  0.000    0.000                       
## P_TMT_stried       -0.020 -0.028 -0.002    0.036  0.000                
## P_FLUE_STR_POC      0.044 -0.063  0.053    0.003  0.000  0.000         
## WJ_CIS_RADY         0.013  0.076  0.114   -0.034  0.031  0.016    0.000
## TOH_SCORE           0.100  0.046 -0.092    0.002  0.184  0.116   -0.013
## WJ_PRIEST_VZTAH    -0.088 -0.019  0.043    0.047 -0.024 -0.064    0.025
## WJ_KV_VYVODZ       -0.180 -0.035  0.100    0.031  0.047 -0.035   -0.005
## Learn              -0.029  0.017  0.076    0.035  0.042 -0.031   -0.019
## AL_HINT_SUM        -0.035 -0.108  0.040    0.007  0.010  0.040   -0.084
##                    TOH_SC WJ_PRI WJ_KV_ Learn  AL_HIN
## P_STROOP_INH_CAS                                     
## WJ_VIZ_POROV                                         
## P_FLUE_PISM_SUM                                      
## P_DF_spravne_spolu                                   
## P_TMT_stried                                         
## P_FLUE_STR_POC                                       
## WJ_CIS_RADY                                          
## TOH_SCORE           0.000                            
## WJ_PRIEST_VZTAH    -0.087  0.000                     
## WJ_KV_VYVODZ        0.022  0.000  0.000              
## Learn              -0.049 -0.002  0.012  0.000       
## AL_HINT_SUM        -0.050  0.065  0.053  0.000  0.000