## Load libraries
suppressPackageStartupMessages(library(readr))
suppressWarnings(suppressPackageStartupMessages(library(tidyverse)))
## Conflicts with tidy packages ----------------------------------------------
options(digits = 2)
## Import files
gbd2013 <- read_csv("~/Downloads/download (25).csv", )
## Parsed with column specification:
## cols(
## `Location` = col_character(),
## Year = col_character(),
## Age = col_character(),
## Sex = col_character(),
## `Cause of death or injury` = col_character(),
## `Risk factor` = col_character(),
## Measure = col_character(),
## Value = col_double(),
## `Lower bound` = col_double(),
## `Upper bound` = col_double()
## )
## Warning: 141 parsing failures.
## row col expected actual
## 1 -- 10 columns 8 columns
## 3 -- 10 columns 8 columns
## 5 -- 10 columns 8 columns
## 6 -- 10 columns 8 columns
## 8 -- 10 columns 8 columns
## ... ... .......... .........
## See problems(...) for more details.
gbd2015 <- read_csv("~/Downloads/download (26).csv")
## Parsed with column specification:
## cols(
## `Location` = col_character(),
## Year = col_character(),
## Age = col_character(),
## Sex = col_character(),
## `Cause of death or injury` = col_character(),
## `Risk factor` = col_character(),
## Measure = col_character(),
## Value = col_double(),
## `Lower bound` = col_double(),
## `Upper bound` = col_double()
## )
## Warning: 144 parsing failures.
## row col expected actual
## 1 -- 10 columns 8 columns
## 3 -- 10 columns 8 columns
## 5 -- 10 columns 8 columns
## 6 -- 10 columns 8 columns
## 8 -- 10 columns 8 columns
## ... ... .......... .........
## See problems(...) for more details.
## Add dataset labels
gbd2015 <- gbd2015 %>%
mutate(dataset = "gbd2015")
gbd2013 <- gbd2013 %>%
mutate(dataset = "gbd2013")
## Create single dataset
gbdsum <- bind_rows(gbd2013, gbd2015)
## Tidy variable names
gbdsum <- gbdsum %>%
janitor::clean_names()
## Compare risk factor values from GBD 2013 and GBD 2015
gbdsum %>%
select(year, risk_factor, measure, value, dataset) %>%
filter((year == "2013" | year == "2015") & measure != "DALY rank") %>%
select(-year) %>%
spread(dataset, value) %>%
mutate(diff = gbd2015 - gbd2013,
abs_diff = abs(diff),
ratio = gbd2015/gbd2013) %>%
arrange(-abs_diff) %>%
knitr::kable()
High body-mass index |
DALYs per 100,000 |
2435.34 |
1530.19 |
-905.15 |
905.15 |
0.63 |
Impaired kidney function |
DALYs per 100,000 |
872.02 |
476.67 |
-395.35 |
395.35 |
0.55 |
Alcohol use |
DALYs per 100,000 |
1032.83 |
656.45 |
-376.38 |
376.38 |
0.64 |
Diet high in processed meat |
DALYs per 100,000 |
489.46 |
188.89 |
-300.57 |
300.57 |
0.39 |
High fasting plasma glucose |
DALYs per 100,000 |
1276.28 |
984.64 |
-291.63 |
291.63 |
0.77 |
Diet low in fiber |
DALYs per 100,000 |
362.16 |
117.79 |
-244.37 |
244.37 |
0.33 |
Low bone mineral density |
DALYs per 100,000 |
399.20 |
170.42 |
-228.78 |
228.78 |
0.43 |
High total cholesterol |
DALYs per 100,000 |
934.90 |
1093.48 |
158.58 |
158.58 |
1.17 |
Diet low in seafood omega-3 fatty acids |
DALYs per 100,000 |
134.70 |
273.41 |
138.70 |
138.70 |
2.03 |
Ambient particulate matter pollution |
DALYs per 100,000 |
420.05 |
556.07 |
136.02 |
136.02 |
1.32 |
Occupational carcinogens |
DALYs per 100,000 |
259.36 |
393.95 |
134.60 |
134.60 |
1.52 |
Diet low in whole grains |
DALYs per 100,000 |
419.81 |
552.63 |
132.82 |
132.82 |
1.32 |
Diet low in fruits |
DALYs per 100,000 |
691.67 |
561.43 |
-130.23 |
130.23 |
0.81 |
Low physical activity |
DALYs per 100,000 |
738.75 |
612.15 |
-126.60 |
126.60 |
0.83 |
Occupational injuries |
DALYs per 100,000 |
146.91 |
63.76 |
-83.15 |
83.15 |
0.43 |
Diet low in polyunsaturated fatty acids |
DALYs per 100,000 |
166.60 |
86.35 |
-80.25 |
80.25 |
0.52 |
Diet high in sodium |
DALYs per 100,000 |
468.72 |
389.55 |
-79.18 |
79.18 |
0.83 |
Drug use |
DALYs per 100,000 |
495.13 |
563.98 |
68.86 |
68.86 |
1.14 |
Iron deficiency |
DALYs per 100,000 |
276.11 |
342.94 |
66.83 |
66.83 |
1.24 |
Diet high in red meat |
DALYs per 100,000 |
90.42 |
31.44 |
-58.98 |
58.98 |
0.35 |
Lead exposure |
DALYs per 100,000 |
29.82 |
73.83 |
44.01 |
44.01 |
2.48 |
Diet high in sugar-sweetened beverages |
DALYs per 100,000 |
61.69 |
20.15 |
-41.53 |
41.53 |
0.33 |
Secondhand smoke |
DALYs per 100,000 |
34.25 |
74.61 |
40.36 |
40.36 |
2.18 |
Residential radon |
DALYs per 100,000 |
52.17 |
12.24 |
-39.92 |
39.92 |
0.23 |
High systolic blood pressure |
DALYs per 100,000 |
1998.22 |
1958.73 |
-39.49 |
39.49 |
0.98 |
Diet low in nuts and seeds |
DALYs per 100,000 |
426.52 |
465.95 |
39.43 |
39.43 |
1.09 |
Diet high in trans fatty acids |
DALYs per 100,000 |
77.88 |
113.81 |
35.93 |
35.93 |
1.46 |
No handwashing with soap |
DALYs per 100,000 |
12.93 |
47.04 |
34.11 |
34.11 |
3.64 |
Childhood sexual abuse |
DALYs per 100,000 |
65.21 |
95.28 |
30.08 |
30.08 |
1.46 |
Occupational ergonomic factors |
DALYs per 100,000 |
230.21 |
203.06 |
-27.15 |
27.15 |
0.88 |
Occupational noise |
DALYs per 100,000 |
30.59 |
50.09 |
19.50 |
19.50 |
1.64 |
Diet suboptimal in calcium |
DALYs per 100,000 |
80.03 |
64.12 |
-15.91 |
15.91 |
0.80 |
Unsafe sex |
DALYs per 100,000 |
76.59 |
86.23 |
9.64 |
9.64 |
1.13 |
Ambient ozone pollution |
DALYs per 100,000 |
31.58 |
23.17 |
-8.41 |
8.41 |
0.73 |
Smoking |
DALYs per 100,000 |
2689.60 |
2695.47 |
5.87 |
5.87 |
1.00 |
Diet low in milk |
DALYs per 100,000 |
50.82 |
56.15 |
5.34 |
5.34 |
1.11 |
Occupational asthmagens |
DALYs per 100,000 |
22.61 |
27.02 |
4.41 |
4.41 |
1.19 |
Occupational particulate matter, gases, and fumes |
DALYs per 100,000 |
34.38 |
31.64 |
-2.75 |
2.75 |
0.92 |
Diet low in vegetables |
DALYs per 100,000 |
468.40 |
466.28 |
-2.12 |
2.12 |
1.00 |
Suboptimal breastfeeding |
DALYs per 100,000 |
10.84 |
9.42 |
-1.42 |
1.42 |
0.87 |
Intimate partner violence |
DALYs per 100,000 |
91.58 |
91.70 |
0.12 |
0.12 |
1.00 |
Childhood undernutrition |
DALYs per 100,000 |
0.17 |
0.07 |
-0.10 |
0.10 |
0.43 |
Vitamin A deficiency |
DALYs per 100,000 |
0.04 |
0.02 |
-0.02 |
0.02 |
0.44 |
Zinc deficiency |
DALYs per 100,000 |
0.21 |
0.22 |
0.01 |
0.01 |
1.05 |
Household air pollution from solid fuels |
DALYs per 100,000 |
0.00 |
0.00 |
0.00 |
0.00 |
NaN |
Unsafe sanitation |
DALYs per 100,000 |
0.00 |
0.00 |
0.00 |
0.00 |
NaN |
Unsafe water source |
DALYs per 100,000 |
0.00 |
0.00 |
0.00 |
0.00 |
NaN |
## Compare 1990 risk factor values from GBD 2013 and GBD 2015 and plot differences
gbdsum %>%
filter(year == "1990" & measure != "DALY rank") %>%
select(risk_factor, measure, value, dataset) %>%
spread(dataset, value) %>%
mutate(diff = gbd2015 - gbd2013,
abs_diff = abs(diff),
ratio = gbd2015/gbd2013) %>%
ggplot(aes(reorder(risk_factor, diff), diff)) +
geom_point(aes(colour = gbd2013, size = gbd2013)) +
geom_hline(yintercept = 0) +
coord_flip() +
labs(x = "",
y="Difference between 2015 and 2013 based 1990 DALY estimates",
title = "Changes in abolsute DALYs per 100,000 for risk factors between \nGBD 2013 and GBD 2015 for England",
caption = "Source: 2015 - https://vizhub.healthdata.org/gbd-compare/; \n2013 - https://vizhub.healthdata.org/gbd-compare/england/")

ggsave("gbd_comparison.pdf", height = 10, width = 8)