Descripción del laboratorio

Realizar graficas del dataset de bicicletas

Configuración del entorno

setwd("/Users/Mrm/Developer/R/Econometria I/Class 2")
bike_df <- read.csv("laboratorio1/hour.csv" , stringsAsFactors = FALSE , strip.white = TRUE , header = TRUE )
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
str(bike_df)
## 'data.frame':    17379 obs. of  17 variables:
##  $ instant   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ dteday    : chr  "2011-01-01" "2011-01-01" "2011-01-01" "2011-01-01" ...
##  $ season    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ yr        : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ mnth      : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ hr        : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ holiday   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ weekday   : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ workingday: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ weathersit: int  1 1 1 1 1 2 1 1 1 1 ...
##  $ temp      : num  0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...
##  $ atemp     : num  0.288 0.273 0.273 0.288 0.288 ...
##  $ hum       : num  0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...
##  $ windspeed : num  0 0 0 0 0 0.0896 0 0 0 0 ...
##  $ casual    : int  3 8 5 3 0 0 2 1 1 8 ...
##  $ registered: int  13 32 27 10 1 1 0 2 7 6 ...
##  $ cnt       : int  16 40 32 13 1 1 2 3 8 14 ...

1. Graficas de la demanda por temporada

demanda_por_temporada <- bike_df %>% group_by(season) %>% summarise(demando = sum(cnt))
  barplot(demanda_por_temporada$demando , main="Demanda por temporada", xlab="Temporada",  
   ylab="Total", names.arg=c("Spring","Summer","Fall","Winter"), col=rainbow(4))

2. Graficas de la demanda por dia festivo o no festivo

demanda_por_dia <- bike_df %>% group_by(holiday) %>% summarise(demando = sum(cnt))
  barplot(demanda_por_dia$demando , main="Demanda por festivo", xlab="Dia",  
   ylab="Total", names.arg=c("No Festivo","Festivo"), col=rainbow(2))

3. Demanda por mes y anio

  anio_0 <- bike_df %>% filter( yr == 0 ) %>% group_by(mnth) %>% summarise(n=sum(cnt))
  anio_1 <- bike_df %>% filter( yr == 1 ) %>% group_by(mnth) %>% summarise(n=sum(cnt))
  range <- range( 0, anio_0$n , anio_1$n)
  plot(anio_0$n, type="o", col="blue", ylim=range, xlim=c(1,12),xaxt='n', ann = FALSE)
  
  
  axis(1, at=1:12, lab=c("Enero","Febrero","Marzo","Abril","Mayo","Junio","Julio","Agosto",
                         "Septiembre","Octubre","Noviembre","Diciembre"))
  lines(anio_1, type="o", pch=22, lty=2, col="red")
  title(main="Demanda por anio y mes", col.main="blue", font.main=4)
  legend("topright", pch = 21:22, col = c("blue", "red"), legend = c("Anio 0", "Anio 1"))

4. Demanda por dia y anio

  anio_0 <- bike_df %>% filter( yr == 0 ) %>% group_by(weekday) %>% summarise(n=sum(cnt))
  anio_1 <- bike_df %>% filter( yr == 1 ) %>% group_by(weekday) %>% summarise(n=sum(cnt))
  range <- range( 0, anio_0$n , anio_1$n)

  plot(x =anio_0$weekday, y = anio_0$n, type="o", col="blue", ylim=range, xlim=c(0,6),xaxt='n', ann = FALSE)
  axis(1, at=0:6, lab=c("Domingo","Lunes","Martes","Miercoles","Jueves","Viernes","Sabado"))
  lines(x = anio_1$weekday, y =  anio_1$n, type="o", pch=22, lty=2, col="red")
  title(main="Demanda por anio y dia", col.main="blue", font.main=4)
  legend("topright", pch = 21:22, col = c("blue", "red"), legend = c("Anio 0", "Anio 1"))

5. Demanda por humedad

  demanda_humedad <- bike_df %>% group_by(hum) %>% summarise(n=sum(cnt))
  range <- range(0,demanda_humedad$n)
  plot( x = demanda_humedad$hum , y = demanda_humedad$n , xlab = "Humedad" , ylab = "Demanda" , ylim=range
        , main = "Demanda por humedad" )

6. Demanda por temperatura

  demanda_humedad <- bike_df %>% group_by(temp) %>% summarise(n=sum(cnt))
  range <- range(0,demanda_humedad$n)
  plot( x = demanda_humedad$temp , y = demanda_humedad$n , xlab = "Temperatura" , ylab = "Demanda" , ylim=range
        , main = "Demanda por temperatura" )

FIN