Librerias

library(plyr)
library(dplyr)
library(ggplot2)
library(Amelia)
library(rpart)
library(imager)

Descripcion de la data

Donor ID: X1

Months since Last Donation: MSLD this is the number of monthis since this donor’s most recent donation.

Number of Donations: NOD this is the total number of donations that the donor has made.

Total Volume Donated (c.c.): TVDcc this is the total amound of blood that the donor has donated in cubuc centimeters.

Months since First Donation: MSFD this is the number of months since the donor’s first donation.

Made Donation in March 2007: MDIM2007

Observations: 576
Variables: 6
$ X1       <int> 619, 664, 441, 160, 358, 335, 47, 164, 736, 436, 46...
$ MSLD     <int> 2, 0, 1, 2, 1, 4, 2, 1, 5, 0, 2, 1, 2, 2, 2, 2, 2, ...
$ NOD      <int> 50, 13, 16, 20, 24, 4, 7, 12, 46, 3, 10, 13, 6, 5, ...
$ TVDcc    <int> 12500, 3250, 4000, 5000, 6000, 1000, 1750, 3000, 11...
$ MSFD     <int> 98, 28, 35, 45, 77, 4, 14, 35, 98, 4, 28, 47, 15, 1...
$ MDIM2007 <int> 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, ...

Histogramas

Numero de Donaciones

En promedio las personas donan sangre cada 8.67 meses

[1] 8.67127

Volumen de donacion en centimetros cubicos

Volumen premedio de sangre, en centimetros cubicos, por donacion

[1] 250

Meses desde la ultima donacion

Meses desde la primera donacion

Modelo 1

modelo1 <- rpart(MDIM2007 ~ MSLD + NOD + TVDcc + MSFD,
data = train, method = "class")

Predicción 1

prediccion1<-predict(object=modelo1, newdata = test, type = "prob")
prediccion1<-data.frame(X1=test$X1,donate = prediccion1)
prediccion1<-select(prediccion1, -donate.0)
write.csv(prediccion1, file = "modelo1x.csv", row.names = FALSE)

Probabilidan de donar sangre en Marzo

Modelo 2

modelo2 <- rpart(MDIM2007 ~ MSLD + NOD,
data = train, method = "class")

Predicción 2

prediccion2<-predict(object=modelo2, newdata = test, type = "prob")
prediccion2<-data.frame(X1=test$X1,donate = prediccion2)
prediccion2<-select(prediccion2, -donate.0)
write.csv(prediccion2, file = "modelo2x.csv", row.names = FALSE)

Probabilidan de donar sangre en Marzo

Evaluacion

LS0tDQp0aXRsZTogIlByZWRpY3RpbmcgQmxvb2QgRG9uYXRpb25zIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KI0xpYnJlcmlhcw0KDQpgYGB7ciBsaWJyZXJpYXN9DQpsaWJyYXJ5KHBseXIpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShBbWVsaWEpDQpsaWJyYXJ5KHJwYXJ0KQ0KbGlicmFyeShpbWFnZXIpDQpgYGANCg0KIyNEZXNjcmlwY2lvbiBkZSBsYSBkYXRhDQoNCiMjIyMqKkRvbm9yIElEOioqIFgxDQojIyMjKipNb250aHMgc2luY2UgTGFzdCBEb25hdGlvbjoqKiBNU0xEIHRoaXMgaXMgdGhlIG51bWJlciBvZiBtb250aGlzIHNpbmNlIHRoaXMgZG9ub3IncyBtb3N0IHJlY2VudCBkb25hdGlvbi4NCiMjIyMqKk51bWJlciBvZiBEb25hdGlvbnM6KiogTk9EIHRoaXMgaXMgdGhlIHRvdGFsIG51bWJlciBvZiBkb25hdGlvbnMgdGhhdCB0aGUgZG9ub3IgaGFzIG1hZGUuDQojIyMjKipUb3RhbCBWb2x1bWUgRG9uYXRlZCAoYy5jLik6KiogVFZEY2MgdGhpcyBpcyB0aGUgdG90YWwgYW1vdW5kIG9mIGJsb29kIHRoYXQgdGhlIGRvbm9yIGhhcyBkb25hdGVkIGluIGN1YnVjIGNlbnRpbWV0ZXJzLg0KIyMjIyoqTW9udGhzIHNpbmNlIEZpcnN0IERvbmF0aW9uOioqIE1TRkQgIHRoaXMgaXMgdGhlIG51bWJlciBvZiBtb250aHMgc2luY2UgdGhlIGRvbm9yJ3MgZmlyc3QgZG9uYXRpb24uDQojIyMjKipNYWRlIERvbmF0aW9uIGluIE1hcmNoIDIwMDc6KiogTURJTTIwMDcNCg0KYGBge3IsIGVjaG89RkFMU0V9DQp0cmFpbiAlPiUNCiAgZ2xpbXBzZSgpDQpgYGANCg0KYGBge3IsIGVjaG89RkFMU0V9DQpjb2xuYW1lcyh0cmFpbik8LWMoIlgxIiwiTVNMRCIsIk5PRCIsIlRWRGNjIiwiTVNGRCIsIk1ESU0yMDA3IikNCmNvbG5hbWVzKHRlc3QpPC1jKCJYMSIsIk1TTEQiLCJOT0QiLCJUVkRjYyIsIk1TRkQiKQ0KYGBgDQoNCiNIaXN0b2dyYW1hcw0KDQojIyNOdW1lcm8gZGUgRG9uYWNpb25lcw0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnRyYWluICU+JQ0KICBzZWxlY3QoTk9EKSAlPiUNCiAgZ2dwbG90KGFlcyh4PU5PRCkpICsNCiAgZ2VvbV9iYXIoKSANCmBgYA0KDQojI0VuIHByb21lZGlvIGxhcyBwZXJzb25hcyBkb25hbiBzYW5ncmUgY2FkYSA4LjY3IG1lc2VzDQoNCmBgYHtyLCBlY2hvPUZBTFNFfQ0KbWVhbigodHJhaW4kTVNGRCkvdHJhaW4kTk9EKQ0KYGBgDQoNCiMjI1ZvbHVtZW4gZGUgZG9uYWNpb24gZW4gY2VudGltZXRyb3MgY3ViaWNvcw0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnRyYWluICU+JQ0KICBzZWxlY3QoVFZEY2MpICU+JQ0KICBnZ3Bsb3QoYWVzKHg9VFZEY2MpKSArDQogIGdlb21fYmFyKCkNCmBgYA0KDQojI1ZvbHVtZW4gcHJlbWVkaW8gZGUgc2FuZ3JlLCBlbiBjZW50aW1ldHJvcyBjdWJpY29zLCBwb3IgZG9uYWNpb24NCg0KYGBge3IsIGVjaG89RkFMU0V9DQptZWFuKCh0cmFpbiRUVkRjYykvdHJhaW4kTk9EKQ0KYGBgDQoNCiMjI01lc2VzIGRlc2RlIGxhIHVsdGltYSBkb25hY2lvbg0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnRyYWluICU+JQ0KICBzZWxlY3QoTVNGRCkgJT4lDQogIGdncGxvdChhZXMoeD1NU0ZEKSkgKw0KICBnZW9tX2JhcigpDQpgYGANCg0KIyMjTWVzZXMgZGVzZGUgbGEgcHJpbWVyYSBkb25hY2lvbg0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnRyYWluICU+JQ0KICBzZWxlY3QoTVNMRCkgJT4lDQogIGdncGxvdChhZXMoeD1NU0xEKSkgKw0KICBnZW9tX2JhcigpDQpgYGANCg0KIyNNb2RlbG8gMSANCg0KYGBge3J9DQptb2RlbG8xIDwtIHJwYXJ0KE1ESU0yMDA3IH4gTVNMRCArIE5PRCArIFRWRGNjICsgTVNGRCwNCmRhdGEgPSB0cmFpbiwgbWV0aG9kID0gImNsYXNzIikNCmBgYA0KDQojI1ByZWRpY2Np824gMQ0KDQpgYGB7cn0NCnByZWRpY2Npb24xPC1wcmVkaWN0KG9iamVjdD1tb2RlbG8xLCBuZXdkYXRhID0gdGVzdCwgdHlwZSA9ICJwcm9iIikNCnByZWRpY2Npb24xPC1kYXRhLmZyYW1lKFgxPXRlc3QkWDEsZG9uYXRlID0gcHJlZGljY2lvbjEpDQpwcmVkaWNjaW9uMTwtc2VsZWN0KHByZWRpY2Npb24xLCAtZG9uYXRlLjApDQp3cml0ZS5jc3YocHJlZGljY2lvbjEsIGZpbGUgPSAibW9kZWxvMXguY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpDQpgYGANCg0KIyMjUHJvYmFiaWxpZGFuIGRlIGRvbmFyIHNhbmdyZSBlbiBNYXJ6bw0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnByZWRpY2Npb24xICU+JQ0KICBnZ3Bsb3QoYWVzKHg9ZG9uYXRlLjEpKSArDQogIGdlb21fYmFyKCkNCmBgYA0KIyNNb2RlbG8gMiANCg0KYGBge3J9DQptb2RlbG8yIDwtIHJwYXJ0KE1ESU0yMDA3IH4gTVNMRCArIE5PRCwNCmRhdGEgPSB0cmFpbiwgbWV0aG9kID0gImNsYXNzIikNCmBgYA0KDQojI1ByZWRpY2Np824gMg0KDQpgYGB7cn0NCnByZWRpY2Npb24yPC1wcmVkaWN0KG9iamVjdD1tb2RlbG8yLCBuZXdkYXRhID0gdGVzdCwgdHlwZSA9ICJwcm9iIikNCnByZWRpY2Npb24yPC1kYXRhLmZyYW1lKFgxPXRlc3QkWDEsZG9uYXRlID0gcHJlZGljY2lvbjIpDQpwcmVkaWNjaW9uMjwtc2VsZWN0KHByZWRpY2Npb24yLCAtZG9uYXRlLjApDQp3cml0ZS5jc3YocHJlZGljY2lvbjIsIGZpbGUgPSAibW9kZWxvMnguY3N2Iiwgcm93Lm5hbWVzID0gRkFMU0UpDQpgYGANCg0KIyMjUHJvYmFiaWxpZGFuIGRlIGRvbmFyIHNhbmdyZSBlbiBNYXJ6bw0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnByZWRpY2Npb24yICU+JQ0KICBnZ3Bsb3QoYWVzKHg9ZG9uYXRlLjEpKSArDQogIGdlb21fYmFyKCkNCmBgYA0KDQojI0V2YWx1YWNpb24NCg0KYGBge3IsIGVjaG89RkFMU0V9DQppbWFnZTE8LWxvYWQuaW1hZ2UoIkQ6LzBhNjhlMjYwODY0NzlkNDktUGljdHVyZXMvZXZhbHVhY2lvbi5QTkciKQ0KcGxvdChpbWFnZTEsIGFzcD0xKQ0KYGBgDQoNCmBgYHtyLCBlY2hvPUZBTFNFfQ0KaW1hZ2UyPC1sb2FkLmltYWdlKCJEOi8wYTY4ZTI2MDg2NDc5ZDQ5LVBpY3R1cmVzL3JhbmtpbmcuUE5HIikNCnBsb3QoaW1hZ2UyLCBhc3A9MSkNCmBgYA0K