#confusionMatrix with caret
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
###################
## 2 class example using the example given in
## https://en.wikipedia.org/wiki/Sensitivity_and_specificity
lvs <- c("positive", "negative")
truth <- factor(rep(lvs, times = c(30, 2000)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(20, 10)),
rep(lvs, times = c(180, 1820))),
levels = rev(lvs))
xtab <- table(pred, truth)
print(confusionMatrix(xtab[2:1,2:1]))
## Confusion Matrix and Statistics
##
## truth
## pred positive negative
## positive 20 180
## negative 10 1820
##
## Accuracy : 0.9064
## 95% CI : (0.8929, 0.9187)
## No Information Rate : 0.9852
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.1521
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.666667
## Specificity : 0.910000
## Pos Pred Value : 0.100000
## Neg Pred Value : 0.994536
## Prevalence : 0.014778
## Detection Rate : 0.009852
## Detection Prevalence : 0.098522
## Balanced Accuracy : 0.788333
##
## 'Positive' Class : positive
##