Changes to this code will be announced via email and the course FaceBook page CalU EcoStats.
For more labs and tutorials see my WordPress Site lo.brow.R
This is a simple function that plots means as individual points (not bars) and approximate 95% confidence intervals using user-supplied means and standard errors or 95% CIs. It provides some feed back via the console and the plot itself regarding errors and how to make the plot more polished.
Base R has no default function to make plots like this, though there are numerous packages that have function that can do this (sciplot, ggplot, Hmisc, gplot, psych). I wrote this function as bare-bones alternative that my students could load via a script and which has only a few, simple arguements. I teach them to calculate means and standard deviations using the tapply() function.
I’ve found that loading packages can be difficult on computers behind campus firewalls, as can updating R if a package requires an up-to-date installation. At the end of this document I provide notes about and links to other ways to approach this problem with R published packages.
# means = your means. , contained in a vector, eg c(mean1, means2...)
# SEs = your standard errors, contained in a vector,
# CI.hi = upper confidence intervals, in a vector,
# CI.lo = lower confidence itnerval, in a vector
# categories = the names of the categories/groups, in the order that they appear
# x.axis.label = what should be plotted on the x axis
# y.axis.label = what should be plotted on the y axis
# adjust.y.max = allows you to adjust the y axis
# adjust.y.min
# adjust.x.spacing
#### The function STARTS here ####
plot.means <- function(means = NULL,
SEs = NULL,
CI.hi = NULL,
CI.lo = NULL,
categories = NULL,
x.axis.label = "Groups",
y.axis.label = "'y.axis.label' sets the axis label",
adjust.y.max = 0,
adjust.y.min = 0,
adjust.x.spacing = 5){
# Error messages
if(is.null(means)==T){
stop("No means entered") }
if(is.null(SEs)==T & is.null(CI.lo) == T){
stop("No standard errors entered") }
if(is.null(CI.lo) != T & is.null(CI.hi)){
stop("CI.lo entered but no CI.hi") }
if(is.null(CI.hi) != T & is.null(CI.lo)){
stop("CI.hi entered but no CI.lo") }
#check if both SE and and CI.is enter
if(is.null(SEs) == F & is.null(CI.hi) == F){
stop("Both SEs and CI.hi entered; use eithe SEs or CIs") }
if(is.null(SEs) == F & is.null(CI.lo) == F){
stop("Both SEs and CI.lo entered; use eithe SEs or CIs") }
#Check if the number of means matches the number of SE
n.means <- length(means)
n.SEs <- length(SEs)
n.CI.lo <- length(CI.lo)
n.CI.hi <- length(CI.hi)
#CHeck standard errors against means
if(n.means != n.SEs & is.null(CI.lo)==T){
error.message <- paste("The number of means is",n.means,"but the number of standard errors is",n.SEs,sep = " ")
stop(error.message) }
#Check CIs against CIs
if(n.CI.lo != n.CI.hi){
error.message <- paste("The number of CI.lo is",n.CI.lo,"but the number of standard errors is",n.CI.hi,sep = " ")
stop(error.message) }
#assign arbitrary categories
if(is.null(categories) == T) {
categories <- paste("Group",1:n.means)
print("Set categoris labls with 'categories=' ")
}
# calculate values for plotting limits
if(is.null(SEs)==F){
y.max <- max(means+2*SEs) + adjust.y.max
y.min <- min(means-2*SEs) - adjust.y.min
}
# calculate values for plotting limits
if(is.null(SEs)==T){
y.max <- max(CI.hi) + adjust.y.max
y.min <- min(CI.lo) - adjust.y.min
}
#determine where to plot points along x-axis
x.values <- 1:n.means
x.values <- x.values/adjust.x.spacing
#set x axis min/max
x.axis.min <- min(x.values)-0.05
x.axis.max <- max(x.values)+0.05
x.limits <- c(x.axis.min,x.axis.max)
#Plot means
plot(means ~ x.values,
xlim = x.limits,
ylim = c(y.min,y.max),
xaxt = "n",
xlab = "",
ylab = "",
cex = 1.25,
pch = 16)
#Add x labels
axis(side = 1,
at = x.values,
labels = categories
)
# Plot confidence intervals
if(is.null(CI.hi) == FALSE &
is.null(CI.lo) == FALSE){
#Plot upper error bar for CIs
lwd. <- 2
arrows(y0 = means,
x0 = x.values,
y1 = CI.hi,
x1 = x.values,
length = 0,
lwd = lwd.)
#Plot lower error bar
arrows(y0 = means,
x0 = x.values,
y1 = CI.lo,
x1 = x.values,
length = 0,
lwd = lwd.)
}
# Estimate CIs from SEs
if(is.null(SEs) == FALSE &
is.null(CI.lo) == TRUE){
lwd. <- 2
arrows(y0 = means,
x0 = x.values,
y1 = means+2*SEs,
x1 = x.values,
length = 0,
lwd = lwd.)
#Plot lower error bar
arrows(y0 = means,
x0 = x.values,
y1 = means-2*SEs,
x1 = x.values,
length = 0,
lwd = lwd.)
}
mtext(text = x.axis.label,side = 1,line = 2)
mtext(text = y.axis.label,side = 2,line = 2)
mtext(text = "Error bars = 95% CI",side = 3,line = 0,adj = 0)
}
#### The function ENDS here ####
#### The function ENDS here ####
#### The function ENDS here ####
#### The function ENDS here ####
#### The function ENDS here ####
The following code is used to test the function. DO NOT LOAD THIS CODE for general use
Calcualte mean and SE from Fisher’s iris data
# THIS IS NOT PART OF THE FUNCTION
data(iris)
iris.3mean <- tapply(iris$Sepal.Length,
iris$Species,
mean)
iris.3sd <- tapply(iris$Sepal.Length,
iris$Species,
sd)
iris.3n <- tapply(iris$Sepal.Length,
iris$Species,
length)
iris.3se <- iris.3sd/sqrt(iris.3n)
Plot Fisher’s iris data with plot.means()
par(mfrow = c(1,1))
plot.means(means = iris.3mean,
SEs = iris.3se*3)
## [1] "Set categoris labls with 'categories=' "
Make fake confidence intervals
CI.hi <-iris.3mean+10
CI.lo <-iris.3mean-10
plot.means(means = iris.3mean,
CI.lo = CI.lo,
CI.hi = CI.hi)
## [1] "Set categoris labls with 'categories=' "
This requires the sciplot package to be downloded
library(sciplot)
ci.fun.use <- function(x) c(mean(x)-1.96*se(x), mean(x)+1.96*se(x))
par(mfrow = c(1,2))
plot.means(means = iris.3mean,
SEs = iris.3se)
## [1] "Set categoris labls with 'categories=' "
lineplot.CI(x.factor = Species,
response = Sepal.Length,
ci.fun = ci.fun.use,
data = iris)
library(MASS)
data(crabs)
crab.means <- coef(lm(FL ~ -1 + sp:sex, data = crabs))
crab.categories <- names(crab.means)
crab.se.fake <- rep(sd(crabs$FL)/sqrt(dim(crabs)[1]),4)
par(mfrow = c(1,1))
plot.means(means = crab.means,
SEs = crab.se.fake,
categories = crab.categories)
These approach vary in if/how they generate the intial plot of the means before adding the error bars.
gplot::plotmeans http://svitsrv25.epfl.ch/R-doc/library/gplots/html/plotmeans.html
Using ggplot w/geom_errorbar ggplot is the standard now for advanced graphics. http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/
https://www.r-bloggers.com/line-plot-for-two-way-designs-using-ggplot2/
Using sciplot:lineplot.CI See examples above
Hmisc::errbar http://svitsrv25.epfl.ch/R-doc/library/Hmisc/html/errbar.html
Using psych::error.bars https://www.personality-project.org/r/html/error.bars.html
If you’re into “dynamite plots” https://www.r-bloggers.com/building-barplots-with-error-bars/ http://monkeysuncle.stanford.edu/?p=485