RHI data analysis

Sung-en Chien

2016年12月12日

This presentation is to analyze the data in the manuscript “Identifying a role for executive function in the rubber hand illusion” with an hierarchical regression.

Why analyze the data with hierarchical regression

comments from JEPHP reviewers in data analysis

suggestions from reviewer 3

how to decide the structure of hierarchical regression

order of adding predictors for updating the models

hierarchical regression - onset time

# settings
setwd("~/Dropbox/NTU exp/RHI/RHI_ANYI/Exp8_ACS&TS&MW") # switch directory to the file directory
library(xlsx)
# load and set data
data <- read.xlsx(file = "SwitchingRHI_n36.xlsx", sheetIndex = 3, header = TRUE)
mw.model <- lm(data$OnsetTime ~ data$Mind.Wandering, data=data)
mw.shift.model <- lm(data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention, data=data)
mw.shift.ts.model <- lm(data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention + 
                            data$Switch.Cost, data=data)
mw.shift.ts.focus.model <- lm(data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention + 
                            data$Switch.Cost+data$Focus.Attention, data=data)
summary(mw.model) # R square = 0.3859
## 
## Call:
## lm(formula = data$OnsetTime ~ data$Mind.Wandering, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -100.10  -57.35  -14.98   48.14  127.68 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -111.84      18.06  -6.194 4.83e-07 ***
## data$Mind.Wandering    98.68      36.98   2.668   0.0116 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 64.41 on 34 degrees of freedom
## Multiple R-squared:  0.1731, Adjusted R-squared:  0.1488 
## F-statistic:  7.12 on 1 and 34 DF,  p-value: 0.0116
summary(mw.shift.model) # R square = 0.3859
## 
## Call:
## lm(formula = data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention, 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -99.813 -53.434   0.479  37.229 104.579 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)             51.09      70.38   0.726    0.473  
## data$Mind.Wandering     59.75      38.32   1.559    0.128  
## data$Shift.Attention   -59.72      25.04  -2.385    0.023 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 60.38 on 33 degrees of freedom
## Multiple R-squared:  0.2947, Adjusted R-squared:  0.252 
## F-statistic: 6.895 on 2 and 33 DF,  p-value: 0.003147
summary(mw.shift.ts.model) # R square = 0.3859
## 
## Call:
## lm(formula = data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -112.877  -30.397   -2.512   35.169  119.799 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)             1.347     70.489   0.019   0.9849  
## data$Mind.Wandering    53.193     36.435   1.460   0.1541  
## data$Shift.Attention  -56.831     23.765  -2.391   0.0228 *
## data$Switch.Cost       99.999     45.886   2.179   0.0368 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57.22 on 32 degrees of freedom
## Multiple R-squared:  0.3859, Adjusted R-squared:  0.3283 
## F-statistic: 6.702 on 3 and 32 DF,  p-value: 0.001227
summary(mw.shift.ts.focus.model)
## 
## Call:
## lm(formula = data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost + data$Focus.Attention, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -115.68  -26.48  -11.11   33.55  125.90 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            -79.48      78.97  -1.007   0.3220   
## data$Mind.Wandering     55.98      34.92   1.603   0.1191   
## data$Shift.Attention   -64.04      23.05  -2.778   0.0092 **
## data$Switch.Cost        89.60      44.26   2.024   0.0516 . 
## data$Focus.Attention    37.91      19.22   1.973   0.0575 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 54.8 on 31 degrees of freedom
## Multiple R-squared:  0.4544, Adjusted R-squared:  0.384 
## F-statistic: 6.454 on 4 and 31 DF,  p-value: 0.0006721
anova(mw.model, mw.shift.model, mw.shift.ts.model, mw.shift.ts.focus.model)
## Analysis of Variance Table
## 
## Model 1: data$OnsetTime ~ data$Mind.Wandering
## Model 2: data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention
## Model 3: data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost
## Model 4: data$OnsetTime ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost + data$Focus.Attention
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1     34 141072                              
## 2     33 120329  1     20743 6.9076 0.01323 *
## 3     32 104778  1     15550 5.1783 0.02993 *
## 4     31  93093  1     11685 3.8912 0.05752 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

results on set time

possible explanation

hierarchical regression - RHI quesionaire scores

mw.model2 <-  lm(data$Ques.RHI ~ data$Mind.Wandering , data=data)
mw.shift.model2 <- lm(data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention , data=data)
mw.shift.ts.model2 <- lm(data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention
                         +data$Switch.Cost, data=data)
mw.shift.ts.focus.model2 <- lm(data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention
                         +data$Switch.Cost+data$Focus.Attention, data=data)
summary(mw.model2) # mind wandering is negatively related to RHI , R suare =0.1217
## 
## Call:
## lm(formula = data$Ques.RHI ~ data$Mind.Wandering, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4827 -1.0193  0.2091  1.0258  3.9465 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           3.2358     0.4694   6.894 6.09e-08 ***
## data$Mind.Wandering  -2.0864     0.9613  -2.170    0.037 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.674 on 34 degrees of freedom
## Multiple R-squared:  0.1217, Adjusted R-squared:  0.09586 
## F-statistic: 4.711 on 1 and 34 DF,  p-value: 0.03705
summary(mw.shift.model2) # R sqare =0.1705
## 
## Call:
## lm(formula = data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention, 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2364 -1.3156  0.0329  1.0337  3.9419 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            0.6330     1.9250   0.329    0.744
## data$Mind.Wandering   -1.4646     1.0481  -1.397    0.172
## data$Shift.Attention   0.9541     0.6849   1.393    0.173
## 
## Residual standard error: 1.652 on 33 degrees of freedom
## Multiple R-squared:  0.1705, Adjusted R-squared:  0.1202 
## F-statistic: 3.391 on 2 and 33 DF,  p-value: 0.04578
summary(mw.shift.ts.model2) # R sqared = 0.2029
## 
## Call:
## lm(formula = data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6100 -1.0424  0.0756  0.8746  4.1383 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)            1.3810     2.0255   0.682    0.500
## data$Mind.Wandering   -1.3660     1.0469  -1.305    0.201
## data$Shift.Attention   0.9106     0.6829   1.333    0.192
## data$Switch.Cost      -1.5036     1.3185  -1.140    0.263
## 
## Residual standard error: 1.644 on 32 degrees of freedom
## Multiple R-squared:  0.2029, Adjusted R-squared:  0.1281 
## F-statistic: 2.715 on 3 and 32 DF,  p-value: 0.06112
summary(mw.shift.ts.focus.model2) #R sqared = 0.2987
## 
## Call:
## lm(formula = data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost + data$Focus.Attention, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7666 -0.8308 -0.0165  0.7380  4.2218 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            3.7923     2.2580   1.679   0.1031  
## data$Mind.Wandering   -1.4491     0.9985  -1.451   0.1568  
## data$Shift.Attention   1.1257     0.6591   1.708   0.0977 .
## data$Switch.Cost      -1.1933     1.2655  -0.943   0.3530  
## data$Focus.Attention  -1.1309     0.5495  -2.058   0.0481 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.567 on 31 degrees of freedom
## Multiple R-squared:  0.2987, Adjusted R-squared:  0.2082 
## F-statistic: 3.301 on 4 and 31 DF,  p-value: 0.02302
anova(mw.model2,mw.shift.model2,mw.shift.ts.model2,mw.shift.ts.focus.model2)
## Analysis of Variance Table
## 
## Model 1: data$Ques.RHI ~ data$Mind.Wandering
## Model 2: data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention
## Model 3: data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost
## Model 4: data$Ques.RHI ~ data$Mind.Wandering + data$Shift.Attention + 
##     data$Switch.Cost + data$Focus.Attention
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1     34 95.321                              
## 2     33 90.027  1    5.2936 2.1560 0.15208  
## 3     32 86.511  1    3.5159 1.4320 0.24051  
## 4     31 76.113  1   10.3983 4.2351 0.04809 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

results - RHI

possible explanation

RHI - onset time

RHIcor <- lm(data$Ques.RHI ~ data$OnsetTime, data=data) # fit linear model
plot(data$OnsetTime, data$Ques.RHI, xlab = "onset time", ylab = "RHI", xlim=c(-200,100), ylim = c(-3,7))
abline(RHIcor, col = "black")

cor(data$OnsetTime, data$Ques.RHI) 
## [1] -0.7312217

discussion