Analisis de DMFT con DMFT_para_calculos

Por género

genero D1


DMFT_resumido %>% 
  group_by(`1_gender`, `d1d3mft-bin`) %>% 
  summarise(n = n()) %>% 
  spread(`d1d3mft-bin`, n)
chisq.test(table(DMFT_resumido$`1_gender`, DMFT_resumido$`d1d3mft-bin`))

    Pearson's Chi-squared test with Yates' continuity correction

data:  table(DMFT_resumido$`1_gender`, DMFT_resumido$`d1d3mft-bin`)
X-squared = 0.0013941, df = 1, p-value = 0.9702

genero D3

chisq.test(table(DMFT_resumido$`1_gender`, DMFT_resumido$d3mftbin))

    Pearson's Chi-squared test with Yates' continuity correction

data:  table(DMFT_resumido$`1_gender`, DMFT_resumido$d3mftbin)
X-squared = 4.4796, df = 1, p-value = 0.0343

Por region

region D1

DMFT_resumido %>% 
  group_by(RegionName, `d1d3mft-bin`) %>%
  summarise( n= n()) %>% 
  spread(`d1d3mft-bin`, n)
chisq.test(table(DMFT_resumido$RegionName, DMFT_resumido$`d1d3mft-bin`))
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  table(DMFT_resumido$RegionName, DMFT_resumido$`d1d3mft-bin`)
X-squared = 47.414, df = 5, p-value = 4.679e-09

Region D3

chisq.test(table(DMFT_resumido$RegionName, DMFT_resumido$d3mftbin))

    Pearson's Chi-squared test

data:  table(DMFT_resumido$RegionName, DMFT_resumido$d3mftbin)
X-squared = 49.31, df = 5, p-value = 1.918e-09

FAS

FAS D1

chisq.test(table(DMFT_resumido$FAS_cat, DMFT_resumido$`d1d3mft-bin`))

    Pearson's Chi-squared test

data:  table(DMFT_resumido$FAS_cat, DMFT_resumido$`d1d3mft-bin`)
X-squared = 0.52609, df = 2, p-value = 0.7687

FAS D3

chisq.test(table(DMFT_resumido$FAS_cat, DMFT_resumido$d3mftbin))

    Pearson's Chi-squared test

data:  table(DMFT_resumido$FAS_cat, DMFT_resumido$d3mftbin)
X-squared = 10.369, df = 2, p-value = 0.005603
LS0tDQp0aXRsZTogIkRNRlQiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpBbmFsaXNpcyBkZSBETUZUIGNvbiBETUZUX3BhcmFfY2FsY3Vsb3MNCmBgYHtyIGRhdGFzZXR9DQpETUZUX3Jlc3VtaWRvIDwtIHJlYWRfY3N2MigiRE1GVF9wYXJhX2NhbGN1bG9zLmNzdiIpDQoNCmBgYA0KDQojIFBvciBnw6luZXJvDQojIyBnZW5lcm8gRDENCmBgYHtyIFBvciBnw6luZXJvIEQxfQ0KDQpETUZUX3Jlc3VtaWRvICU+JSANCiAgZ3JvdXBfYnkoYDFfZ2VuZGVyYCwgYGQxZDNtZnQtYmluYCkgJT4lIA0KICBzdW1tYXJpc2UobiA9IG4oKSkgJT4lIA0KICBzcHJlYWQoYGQxZDNtZnQtYmluYCwgbikNCg0KDQpgYGANCmBgYHtyIGNoaSBnZW5lcm8gRDEgfQ0KY2hpc3EudGVzdCh0YWJsZShETUZUX3Jlc3VtaWRvJGAxX2dlbmRlcmAsIERNRlRfcmVzdW1pZG8kYGQxZDNtZnQtYmluYCkpDQpgYGANCg0KIyMgZ2VuZXJvIEQzDQpgYGB7ciBwb3IgZ2VuZXJvIEQzfQ0KRE1GVF9yZXN1bWlkbyAlPiUgDQogIGdyb3VwX2J5KGAxX2dlbmRlcmAsIGQzbWZ0YmluKSAlPiUgDQogIHN1bW1hcmlzZShuPW4oKSkgJT4lIA0KICBzcHJlYWQoZDNtZnRiaW4sIG4pDQpgYGANCg0KYGBge3IgY2hpIHBvciBnZW5lcm8gZDN9DQpjaGlzcS50ZXN0KHRhYmxlKERNRlRfcmVzdW1pZG8kYDFfZ2VuZGVyYCwgRE1GVF9yZXN1bWlkbyRkM21mdGJpbikpDQpgYGANCg0KIyMgUG9yIHJlZ2lvbg0KIyMjIHJlZ2lvbiBEMQ0KDQoNCmBgYHtyIFBvciByZWdpw7NufQ0KRE1GVF9yZXN1bWlkbyAlPiUgDQogIGdyb3VwX2J5KFJlZ2lvbk5hbWUsIGBkMWQzbWZ0LWJpbmApICU+JQ0KICBzdW1tYXJpc2UoIG49IG4oKSkgJT4lIA0KICBzcHJlYWQoYGQxZDNtZnQtYmluYCwgbikNCmBgYA0KDQpgYGB7ciBjaGkgcmVnaW9ufQ0KY2hpc3EudGVzdCh0YWJsZShETUZUX3Jlc3VtaWRvJFJlZ2lvbk5hbWUsIERNRlRfcmVzdW1pZG8kYGQxZDNtZnQtYmluYCkpDQpgYGANCg0KIyMjIFJlZ2lvbiBEMw0KYGBge3IgcmVnaW9uIGQzfQ0KRE1GVF9yZXN1bWlkbyAlPiUgDQogIGdyb3VwX2J5KFJlZ2lvbk5hbWUsIGQzbWZ0YmluKSAlPiUgDQogIHN1bW1hcmlzZShuPW4oKSkgJT4lIA0KICBzcHJlYWQoZDNtZnRiaW4sIG4pDQpgYGANCg0KYGBge3IgY2hpIHJlZ2lvbiBkM30NCmNoaXNxLnRlc3QodGFibGUoRE1GVF9yZXN1bWlkbyRSZWdpb25OYW1lLCBETUZUX3Jlc3VtaWRvJGQzbWZ0YmluKSkNCmBgYA0KIyMgRkFTDQojIyMgRkFTIEQxDQpgYGB7ciBwb3IgRkFTIEQxfQ0KRE1GVF9yZXN1bWlkbyAlPiUgDQogIGdyb3VwX2J5KEZBU19jYXQsIGBkMWQzbWZ0LWJpbmApICU+JSANCiAgc3VtbWFyaXNlKG4gPSBuKCkpICU+JSANCiAgc3ByZWFkKGBkMWQzbWZ0LWJpbmAsIG4pDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KHRhYmxlKERNRlRfcmVzdW1pZG8kRkFTX2NhdCwgRE1GVF9yZXN1bWlkbyRgZDFkM21mdC1iaW5gKSkNCmBgYA0KDQojIyMgRkFTIEQzDQpgYGB7ciBGQVMgRDN9DQpETUZUX3Jlc3VtaWRvICU+JSANCiAgZ3JvdXBfYnkoRkFTX2NhdCwgYGQzbWZ0YmluYCkgJT4lIA0KICBzdW1tYXJpc2UobiA9IG4oKSkgJT4lIA0KICBzcHJlYWQoYGQzbWZ0YmluYCwgbikNCmBgYA0KDQoNCg0KYGBge3IgY2hpIGZhcyBkM30NCmNoaXNxLnRlc3QodGFibGUoRE1GVF9yZXN1bWlkbyRGQVNfY2F0LCBETUZUX3Jlc3VtaWRvJGQzbWZ0YmluKSkNCmBgYA0KDQo=