Submit your answers through Blackboard (under Content).
To facilitate an examination that is fair, effective, and convenient for all of us I am going to lay out some ground rules that can be boiled down to a single sentence: This is an individual, independent exam. That means:
Additionally:
Some of the regression results below are in Stata format. The most important information is usually the table at the bottom and the details in the top right. The dependent variable is in the top left cell of the bottom table (for question 1 it’s gas
). The table has a column labeled Coef.
which is what R’s output would label Estimate
. In every other way the results are exactly the same.
reg gas price income miles
Source | SS df MS Number of obs = 128
-------------+------------------------------ F( 3, 124) = 1476.85
Model | 1.78454603 3 .594848676 Prob > F = 0.0000
Residual | .049944845 124 .000402781 R-squared = 0.9728
-------------+------------------------------ Adj R-squared = 0.9721
Total | 1.83449087 127 .01444481 Root MSE = .02007
------------------------------------------------------------------------------
gas | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
price | -.1385602 .0109847 -12.61 0.000 -.1603019 -.1168185
income | .9985463 .0154034 64.83 0.000 .9680586 1.029034
miles | -.5181275 .0173898 -29.79 0.000 -.5525468 -.4837082
_cons | -1.514543 .1171849 -12.92 0.000 -1.746485 -1.282601
reg lifeexpectancy EastEur
Source | SS df MS Number of obs = 33
-------------+------------------------------ F( 1, 31) = 13.49
Model | 61.4479564 1 61.4479564 Prob > F = 0.0009
Residual | 141.197516 31 4.55475857 R-squared = 0.3032
-------------+------------------------------ Adj R-squared = 0.2808
Total | 202.645472 32 6.332671 Root MSE = 2.1342
------------------------------------------------------------------------------
lifeexpect~y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
EastEur | -3.337913 .9087699 -3.67 0.001 -5.191361 -1.484464
_cons | 80.48077 .4185487 192.29 0.000 79.62713 81.3344
------------------------------------------------------------------------------
lifeexpect~y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
EastEur | -2.283396 .8911585 -2.56 0.016 -4.103384 -.4634071
GDPPC | .0504931 .0172679 2.92 0.007 .0152275 .0857588
_cons | 78.40963 .8015952 97.82 0.000 76.77256 80.04671
------------------------------------------------------------------------------
lifeexpect~y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
EastEur | -4.772011 1.740877 -2.74 0.010 -8.332504 -1.211518
GDPPC | .0434839 .017324 2.51 0.018 .0080524 .0789154
EastEurGDPPC | .1163334 .0705772 1.65 0.110 -.0280132 .2606799
_cons | 78.69714 .7988712 98.51 0.000 77.06326 80.33101
Is the effect of GDP per capita on life expectancy statistically significantly different in Eastern Europe compared to non Eastern European countries? Use a significance level of 0.05. Be specific in explaining your answer.
Suppose the errors in the above model are heteroskedastic. What is the consequence? Be specific about what elements of the output are affected and how.
Suppose that someone notes that obesity rates are not included in the model. What two conditions need to be true for this to be a problem? Discuss whether they will likely be true in this model.
We next report a model with life expectancy as a function of an Eastern Europe dummy, GDP per capita and (health) expenditures. One might expect that GDP per capita and health expenditures are correlated. If so which, if any, results are called into question. If not, why not?
reg lifeexpectancy EastEur GDPPC expenditures
Source | SS df MS Number of obs = 32
-------------+------------------------------ F( 3, 28) = 9.46
Model | 86.4403967 3 28.8134656 Prob > F = 0.0002
Residual | 85.3184104 28 3.04708609 R-squared = 0.5033
-------------+------------------------------ Adj R-squared = 0.4500
Total | 171.758807 31 5.54060668 Root MSE = 1.7456
------------------------------------------------------------------------------
lifeexpect~y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
EastEur | -2.666673 .8661047 -3.08 0.005 -4.440808 -.8925377
GDPPC | .0362486 .0166744 2.17 0.038 .0020927 .0704046
expenditures | .0596671 .1583984 0.38 0.709 -.2647973 .3841314
_cons | 78.60578 1.643044 47.84 0.000 75.24016 81.9714
reg GDPPC EastEur expenditures if lifeexpectancy !=.
Source | SS df MS Number of obs = 32
-------------+------------------------------ F( 2, 29) = 3.97
Model | 3003.31835 2 1501.65918 Prob > F = 0.0298
Residual | 10959.3335 29 377.908051 R-squared = 0.2000
-------------+------------------------------ Adj R-squared = 0.1900
Total | 13962.6518 31 450.408123 Root MSE = 19.44
------------------------------------------------------------------------------
GDPPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
EastEur | -18.96621 8.979425 -2.11 0.043 -37.33119 -.6012208
expenditures | 1.616321 1.73829 0.93 0.360 -1.93888 5.171523
_cons | 26.26179 17.63602 1.49 0.147 -9.807908 62.3315
------------------------------------------------------------------------------
reg lifeexpectancy expenditures GDPPC EastEur LatinAmerica Asia WestEur MidEast
Source | SS df MS Number of obs = 32
-------------+------------------------------ F( 7, 24) = 11.21
Model | 131.521281 7 18.7887545 Prob > F = 0.0000
Residual | 40.2375257 24 1.67656357 R-squared = 0.7657
-------------+------------------------------ Adj R-squared = 0.6974
Total | 171.758807 31 5.54060668 Root MSE = 1.2948
------------------------------------------------------------------------------
lifeexpect~y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
expenditures | .2892163 .1295467 2.23 0.035 .0218452 .5565875
GDPPC | .0229366 .0136133 1.68 0.105 -.0051598 .051033
EastEur | 2.079226 1.159876 1.79 0.086 -.3146406 4.473093
LatinAmerica | 4.265266 1.695908 2.52 0.019 .7650835 7.765448
Asia | 5.820845 1.195759 4.87 0.000 3.35292 8.28877
WestEur | 4.749333 1.039352 4.57 0.000 2.604216 6.89445
MidEast | 6.514199 1.679054 3.88 0.001 3.048802 9.979597
_cons | 72.30463 1.799617 40.18 0.000 68.5904 76.01885