B.Actual2015 | BestForecast2015 |
---|---|
347 | 494.7259 |
296 | 423.1596 |
566 | 451.9351 |
820 | 789.1606 |
919 | 1029.0407 |
1379 | 1048.4620 |
1159 | 1137.0253 |
1132 | 1150.5906 |
1119 | 1191.6808 |
1238 | 1270.3948 |
904 | 715.5118 |
699 | 538.0244 |
B.Actual2015 | SecondBestFC |
---|---|
347 | 467.0779 |
296 | 433.5630 |
566 | 488.5433 |
820 | 775.7648 |
919 | 1025.4609 |
1379 | 1059.2984 |
1159 | 1060.0561 |
1132 | 1157.8419 |
1119 | 1139.3621 |
1238 | 1210.0183 |
904 | 824.4479 |
699 | 526.6290 |
## # A tibble: 12 × 3
## Month.YrInventory BestForecast2015 SeasonIndexB
## <chr> <dbl> <dbl>
## 1 January 2015 494.7259 0.5016624
## 2 February 2015 423.1596 0.4685116
## 3 March 2015 451.9351 0.6090358
## 4 April 2015 789.1606 0.9522785
## 5 May 2015 1029.0407 1.1922550
## 6 June 2015 1048.4620 1.3178173
## 7 July 2015 1137.0253 1.3216311
## 8 August 2015 1150.5906 1.3392333
## 9 September 2015 1191.6808 1.3606493
## 10 October 2015 1270.3948 1.3976139
## 11 November 2015 715.5118 0.8874438
## 12 December 2015 538.0244 0.6518678
Month.YrInventory | Daily_Avg | Sigma_X_SI | Av_LeadTime_Demand | Safety_Stock | Reorder_Point |
---|---|---|---|---|---|
January 2015 | 24 | 16 | 118 | 72 | 190 |
February 2015 | 20 | 16 | 101 | 72 | 173 |
March 2015 | 22 | 16 | 108 | 73 | 180 |
April 2015 | 38 | 16 | 188 | 74 | 262 |
May 2015 | 49 | 16 | 245 | 75 | 320 |
June 2015 | 50 | 17 | 250 | 76 | 325 |
July 2015 | 54 | 17 | 271 | 76 | 347 |
August 2015 | 55 | 17 | 274 | 76 | 350 |
September 2015 | 57 | 17 | 284 | 76 | 360 |
October 2015 | 60 | 17 | 302 | 76 | 379 |
November 2015 | 34 | 16 | 170 | 74 | 244 |
December 2015 | 26 | 16 | 128 | 73 | 201 |
Month.YrInventory | Daily_Avg | Sigma_X_1plusSI | Av_LeadTime_Demand | Safety_Stock | Reorder_Point |
---|---|---|---|---|---|
January 2015 | 24 | 8 | 118 | 35 | 153 |
February 2015 | 20 | 7 | 101 | 33 | 133 |
March 2015 | 22 | 9 | 108 | 42 | 150 |
April 2015 | 38 | 14 | 188 | 66 | 254 |
May 2015 | 49 | 18 | 245 | 83 | 328 |
June 2015 | 50 | 20 | 250 | 92 | 342 |
July 2015 | 54 | 20 | 271 | 92 | 363 |
August 2015 | 55 | 20 | 274 | 93 | 367 |
September 2015 | 57 | 21 | 284 | 95 | 379 |
October 2015 | 60 | 21 | 302 | 97 | 400 |
November 2015 | 34 | 14 | 170 | 62 | 232 |
December 2015 | 26 | 10 | 128 | 45 | 174 |
ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | |
---|---|---|---|---|---|---|---|
Training set | 4.4 | 215.7496 | 160.4571 | -3.520532 | 21.77095 | 1 | 0.288158 |
Test set | -130.5 | 132.1003 | 130.5000 | -26.771912 | 26.77191 | NA | NA |
ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | |
---|---|---|---|---|---|---|---|
Training set | 4.4 | 215.7496 | 160.4571 | -3.520532 | 21.77095 | 1.000000 | 0.288158 |
Test set | 299.9 | 409.2763 | 352.1000 | 24.439203 | 35.14797 | 2.194355 | NA |
ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | |
---|---|---|---|---|---|---|---|
Training set | -14.27173 | 91.7064 | 79.29703 | 1.04432 | 11.23638 | 0.6433177 | 0.4521287 |
Test set | 1432.14500 | 1701.1412 | 1439.80938 | 136.66123 | 138.15818 | 11.6808267 | NA |
ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | |
---|---|---|---|---|---|---|---|
Training set | 4.278615 | 212.7381 | 156.0029 | -3.423313 | 21.16665 | 0.9722402 | 0.2880565 |
Test set | 299.904697 | 409.2798 | 352.1028 | 24.439774 | 35.14816 | 2.1943730 | NA |
## ETS(A,N,N)
##
## Call:
## ets(y = Ctrain)
##
## Smoothing parameters:
## alpha = 0.9999
##
## Initial states:
## l = 468.6699
##
## sigma: 212.7382
##
## AIC AICc BIC
## 520.9312 521.6812 525.6817
## ME RMSE MAE MPE MAPE MASE
## Training set 4.259471 212.7382 156.0210 -3.427416 21.17052 0.9723531
## Test set 178.004774 341.0000 265.0016 11.946853 29.79414 NA
## ACF1
## Training set 0.2880284
## Test set NA
ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | |
---|---|---|---|---|---|---|---|
Training set | 4.259471 | 212.7382 | 156.0210 | -3.427416 | 21.17052 | 0.9723531 | 0.2880284 |
Test set | 178.004774 | 341.0000 | 265.0016 | 11.946853 | 29.79414 | NA | NA |
ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 | |
---|---|---|---|---|---|---|---|
Training set | -4.730953 | 214.5025 | 158.9148 | -5.01515 | 21.91948 | 0.9903876 | 0.2979241 |
Test set | 156.429150 | 321.3651 | 249.3810 | 9.38250 | 28.46142 | NA | NA |
## Series: B
## ARIMA(0,1,1)(0,1,1)[12]
##
## Coefficients:
## ma1 sma1
## -0.7438 -0.5104
## s.e. 0.1110 0.2052
##
## sigma^2 estimated as 19740: log likelihood=-287.58
## AIC=581.16 AICc=581.74 BIC=586.58
## ME RMSE MAE MPE MAPE MASE
## Training set 7.688023 120.9745 83.0515 -0.9960218 10.74112 0.478127
## Test set 131.208585 286.9497 229.8357 10.2290856 27.46751 1.323163
## ACF1
## Training set -0.01263556
## Test set NA
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Jan 2105 494.7259 318.0591 671.3926 224.5374 764.9143
## Feb 2105 423.1596 235.9723 610.3469 136.8814 709.4379
## Mar 2105 451.9351 254.7879 649.0823 150.4244 753.4457
## Apr 2105 789.1606 582.5330 995.7882 473.1509 1105.1703
## May 2105 1029.0407 813.3489 1244.7324 699.1687 1358.9127
## Jun 2105 1048.4620 824.0720 1272.8520 705.2871 1391.6368
## Jul 2105 1137.0253 904.2619 1369.7887 781.0444 1493.0062
## Aug 2105 1150.5906 909.7447 1391.4365 782.2486 1518.9326
## Sep 2105 1191.6808 943.0150 1440.3466 811.3793 1571.9823
## Oct 2105 1270.3948 1014.1476 1526.6420 878.4985 1662.2910
## Nov 2105 715.5118 451.9012 979.1225 312.3541 1118.6695
## Dec 2105 538.0244 267.2504 808.7983 123.9114 952.1373
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Jan 2105 467.0779 394.0232 540.1325 355.3504 578.8053
## Feb 2105 433.5630 363.2208 503.9052 325.9838 541.1422
## Mar 2105 488.5433 407.9845 569.1021 365.3392 611.7474
## Apr 2105 775.7648 650.2409 901.2887 583.7926 967.7370
## May 2105 1025.4609 858.9559 1191.9659 770.8135 1280.1083
## Jun 2105 1059.2984 882.8443 1235.7525 789.4351 1329.1617
## Jul 2105 1060.0561 878.4621 1241.6501 782.3320 1337.7802
## Aug 2105 1157.8419 957.6237 1358.0602 851.6346 1464.0493
## Sep 2105 1139.3621 936.3761 1342.3481 828.9218 1449.8025
## Oct 2105 1210.0183 992.4114 1427.6252 877.2172 1542.8194
## Nov 2105 824.4479 649.7491 999.1468 557.2691 1091.6268
## Dec 2105 526.6290 379.0541 674.2038 300.9327 752.3252
## Jan 2106 467.0779 322.8925 611.2632 246.5654 687.5903
## Feb 2106 433.5630 290.6792 576.4468 215.0411 652.0849
## Mar 2106 488.5433 340.3107 636.7759 261.8411 715.2454
## Apr 2106 775.7648 598.9757 952.5539 505.3892 1046.1404
## May 2106 1025.4609 817.5259 1233.3959 707.4518 1343.4700
## Jun 2106 1059.2984 843.2792 1275.3176 728.9256 1389.6712
## Jul 2106 1060.0561 839.7847 1280.3275 723.1801 1396.9321
## Aug 2106 1157.8419 921.9488 1393.7351 797.0745 1518.6094
## Sep 2106 1139.3621 901.0860 1377.6383 774.9502 1503.7741
## Oct 2106 1210.0183 959.1410 1460.8956 826.3345 1593.7021
## Nov 2106 824.4479 609.6893 1039.2066 496.0030 1152.8929
## Dec 2106 526.6290 333.2515 720.0065 230.8836 822.3743
## ETS(M,N,A)
##
## Call:
## ets(y = variableB, model = "MNA")
##
## Smoothing parameters:
## alpha = 0.254
## gamma = 1e-04
##
## Initial states:
## l = 890.5525
## s=-320.7139 -22.8562 362.6931 292.0145 310.5107 212.7001
## 211.968 178.1159 -71.586 -358.8038 -413.7806 -380.2618
##
## sigma: 0.122
##
## AIC AICc BIC
## 487.5074 511.5074 511.2602
## Point.Forecast Lo.80 Hi.80 Lo.95 Hi.95
## Jan 2105 467.0779 394.0232 540.1325 355.3504 578.8053
## Feb 2105 433.5630 363.2208 503.9052 325.9838 541.1422
## Mar 2105 488.5433 407.9845 569.1021 365.3392 611.7474
## Apr 2105 775.7648 650.2409 901.2887 583.7926 967.7370
## May 2105 1025.4609 858.9559 1191.9659 770.8135 1280.1083
## Jun 2105 1059.2984 882.8443 1235.7525 789.4351 1329.1617
## Jul 2105 1060.0561 878.4621 1241.6501 782.3320 1337.7802
## Aug 2105 1157.8419 957.6237 1358.0602 851.6346 1464.0493
## Sep 2105 1139.3621 936.3761 1342.3481 828.9218 1449.8025
## Oct 2105 1210.0183 992.4114 1427.6252 877.2172 1542.8194
## Nov 2105 824.4479 649.7491 999.1468 557.2691 1091.6268
## Dec 2105 526.6290 379.0541 674.2038 300.9327 752.3252
## Jan 2106 467.0779 322.8925 611.2632 246.5654 687.5903
## Feb 2106 433.5630 290.6792 576.4468 215.0411 652.0849
## Mar 2106 488.5433 340.3107 636.7759 261.8411 715.2454
## Apr 2106 775.7648 598.9757 952.5539 505.3892 1046.1404
## May 2106 1025.4609 817.5259 1233.3959 707.4518 1343.4700
## Jun 2106 1059.2984 843.2792 1275.3176 728.9256 1389.6712
## Jul 2106 1060.0561 839.7847 1280.3275 723.1801 1396.9321
## Aug 2106 1157.8419 921.9488 1393.7351 797.0745 1518.6094
## Sep 2106 1139.3621 901.0860 1377.6383 774.9502 1503.7741
## Oct 2106 1210.0183 959.1410 1460.8956 826.3345 1593.7021
## Nov 2106 824.4479 609.6893 1039.2066 496.0030 1152.8929
## Dec 2106 526.6290 333.2515 720.0065 230.8836 822.3743
Month.Yr <- c(“February 2015”, “March 2015”, “April 2015”, “May 2015”, “June 2015”, “July 2015”, “August 2015”, “September 2015”,“October 2015”, “November 2015”, “December 2015”)
#Month.Yr <- c("January 2016", "February 2016", "March 2016", "April 2016", "May 2016", #"June 2016", "July 2016", "August 2016", "September 2016","October 2016", "November 2016", "December #2016", "January 2017")", "January 2017")
[In a classic overview of forecasting demand,] the authors Chambers, Mullick, and Smith note that “in production and inventory control, increased accuracy is likely to lead to lower safety stocks. Here the manager and forecaster must weigh the cost of a more sophisticated and more expensive technique against potential savings in inventory costs.(https://hbr.org/1971/07/how-to-choose-the-right-forecasting-technique)Harvard Business Review
The researchers wrote this is 1971, and perhaps forecasting techniques are no longer carry such a hefty price tag. For this project we endeavor to provide Sigco, Inc. with an inventory management model that will help prevent stockouts of key products. Overall, Sigco uses 300 different items, but there are only a handful of ones which are utilized regularly.
To develop this model, we performed time series analysis with monthly demand data since January 2012 on thirty different SKUs that Sigco uses with such regularity that stock outs are common. We used a combination of forecasting and the EOQ. We exclusively rely on time series forecasting; because we are not looking into factors which may affect the SKU behavior, we do not do any regression that looks for correlation.
*Initially we had 2 years of historical data, but research into time series analysis revealed that’s not enough to identify underlying trends and seasonality. Forecasting with this monthly data in POM consistently revealed that the lowest error, mainly MAPE, came from naive forecasting.
*Secured three more years of data. Once intitially plotted with the assistance of the forecasting package in R, we were able to patterns. We could call on special functions to decompose each time series for error, trend and seasonality and to return a forecast based utilizing the best model, mainly exponential smoothing. The forecasting model which returns the lowest error is automatically chosen.
*To apply these predictions to the EOQ model, we use a monthly forcast for the average demand and divide it by 21 (business days per month) to reach an average daily demand \[\bar{x}_d\].
*To arrive at the sigma of daily demand, \[\sigma_d\], we take the standard deviation of monthly demand for the hold out, divide it by 21 and then multiply it by the seasonal index, also returned as part of the decomposition function.
*Next, we calculate daily safety stock and reorder levels for eacj month. Because there has been a shift from month to month historically, we think it makes sense to apply an inventory system which takes this into account.
*Because Sigco would like to factor in a 10% increase in business, we can multiple the ROP and SS by 1.1
We did monthly and quarterly analyses. Quarterly returned lower errors, however in developing a test model where we “held out” about 20%, monthly analyses returned lower MAPEs.
Graphing the data
Are there consistent patterns?
Is there a significant trend?
Is seasonality important?
Is there evidence of the presence of business cycles? Are there any outliers in the data that need to be explained by those with expert knowledge?
How strong are the relationships among the variables available for analysis?
Continuous Review Policy
consistent lead time of 6 days and a service level of 98%.
Service level of 98%.
\[\sigma_d =\frac{\sigma_d}{\sqrt{21}\]